
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 16

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at Greedy Algorithms and Dynamic Programming.

2 Preliminaries

So far we have seen divide-and-conquer algorithms which recursively break down
the problem into two or more subproblems of the same (or almost the same)
type until these become simple enough to be solved directly. The solutions to
the subproblems are then combined to give a solution to the original problem.
Quicksort and Mergesort are these types of algorithms. We prove the correctness
of such algorithms often by induction and obtain their running times by the
Master Theorem.

Backtracking or Branch-and-Bound technique: It is another approach
for finding all (or some) solutions to a computational problem. They often incre-
mentally build candidates to the solution recursively in each step and abandons
each partial candidate (backwards) as soon as it determines that it cannot be
completed to a valid or optimum solution. The running times of these algo-
rithms is often exponential (e.g. 2n) and there are several techniques especially
in AI to improve their running times.

Greedy Algorithms: Unlike backtracking algorithms that try every possi-
ble choice (solutions), a greedy algorithm tries to make a locally optimal choice
at each step with the hope of finding a global optimum. In other words, a greedy
algorithm never reconsiders its choices. That is the reason for many problems
greedy algorithms fail to produce the solution or the optimal solution. Say you
have 25-cent,10-cent and 4-cent coins and we want to make change of 41 cents:
Greedy produces25,10 and 4 and fails while a backtracking algorithm gives 25
and four 4 cent coins. However greedy algorithms are often very fast unlike
backtracking algorithms. Djikstra’s algorithm for shortest paths (that we see
later) is a greedy algorithm. Greedy coloring is another application.

1



Lecture 16 3 A SPECIAL KNAPSACK PROBLEM: SUBSET SUM

Dynamic Programming: It is a method for solving problems by breaking
them down into simpler subproblems. The main idea is as follows: In general to
solve a problem, we need to solve different parts of the problem (subproblems),
then combine the solutions of the subproblems to reach an overall solution.
Often, many of these subproblems are really the same. This is the place that
dynamic programming saves time compared to backtracking algorithms, since
unlike backtracking algorithms, it seeks to solve each subproblem only once, thus
reducing the number of computations. The proof of correctness for dynamic
programming is often by induction.

3 A Special Knapsack Problem: Subset Sum

Suppose we are given a knapsack and we want to pack it fully, if it is possible.
More precisely, we have the following problem: Given an integer k and n items
of different sizes such that the ith item has an integer size si, find a subset of
the items whose sizes sum to exactly k, or determine that no such subset exists.

3.1 Greedy Algorithm:

Always use the first (the largest) item that you can pack. This algorithm fails.
Example is k = 13, n = 4 and the sizes as 6, 5, 4, 3. Then greedy packs only 6
and 5, but we can pack 6, 4, and 3.

3.2 Backtracking Algorithm:

We do brute-force or exhaustive search in this case.

Algorithm 1 BF(n, k,sol)

1: if n = 0 and k = 0 then
2: return true;
3: end if
4: if n = 0 and k > 0 then
5: return false;
6: end if
7: if k < 0 then
8: return false;
9: end if

10: return
(
BF(n− 1, k,sol) OR BF(n− 1, k− sn,sol∪{sn})

)
We call at the beginning with BF(n, k, ∅) to get the answer. Since we try

both cases at each stage, the running time in the worst case in Ω(2n).

2



Lecture 16 4 LONGEST COMMON SUBSEQUENCE (LCS)

3.3 Dynamic Programming

Similar to backtracking assume DP(n, k) is true if and only if we can construct k
with numbers from s1, s2, . . . , sn. Then the recursion for DP is exactly the same
as BF. However we can improve the running time a lot by this observation that
the total number of problems may not be too high. There are n possibilities for
the first parameter and k possibilities for the second parameter. Thus overall
we only have nk different subproblems. Thus if we store all known results in a
n × k array then we compute each subproblem only once. If we are interested
in finding the actual subset, then we can add to each entry a flag (sol) that
indicates whether the corresponding item was selected in that step or not. This
flag (sol) can be traced back from the (n, k)-th entry and the subset can be
recovered.

Algorithm 2 DP(n, k)

1: Set all flag[n, k] to -1.
2: if flag[n, k] <> −1 then
3: return flag[n, k];
4: end if
5: if n = 0 and k = 0 then
6: flag[n, k] = 1;
7: end if
8: if n = 0 and k > 0 then
9: flag[n, k] = 0;

10: end if
11: if k < 0 then
12: flag[n, k] = 0;
13: end if
14: if flag[n− 1, k] = 1 then
15: flag[n, k] = 1;
16: sol[n, k] = 0;
17: end if
18: if flag[n− 1, k− sn] = 1 then
19: flag[n, k] = 1;
20: sol[n, k] = 1;
21: end if
22: return flag[n, k];

4 Longest Common Subsequence (LCS)

A subsequence of a sequence is a sequence obtained by deleting some elements
without changing the order of the remaining elements. For example, ADF is a
subsequence of ABCDEF.

The problem is to find the LCS of two sequences (strings) given by a1, a2, . . . , an

3



Lecture 16 6 BIN PACKING

and b1, b2, . . . , bm. Again let LCS(i, j) be the length of LCS of a1, a2, . . . , ai
and b1, b2, . . . , bj. Then

LCS(i, j) =


0 if i = 0 or j = 0
LCS(i− 1, j− 1) + 1 if ai = bj

max
(
LCS(i, j− 1), LCS(i− 1, j)

)
if ai 6= bj

Again if we are not careful then we have a brute-force backtracking algorithm
with running time O(2min{n,m}). But if we use dynamic programming then the
running time is O(nm).

5 Independent Set in Trees

An independent set in a graph is a set of vertices such that no two of the
vertices are adjacent. Given a tree we want to find a largest independent set in
it. Without loss of generality we assume the tree is rooted at say r and Ti is the
subtree rooted at node i. For every vertex v let C(v) denote the set of children
of v. Then we have

IS(i) =

{
1 if i is a leaf

max
(∑

j∈C(i) IS(j), 1+
∑

k∈C(j),j∈C(i) IS(k)
)

Using dynamic programming, we have a running time of O(n).

6 Bin Packing

Packing different-sized objects into fixed sized bins using as few of the bins as
possible. Formally the problem is as follows: Let x1, x2, . . . , xn be a set of real
number each between 0 and 1. Partition the numbers into as few subsets as
possible such that the sum of numbers in each subset is at most 1.

6.1 Greedy Algorithm

Put x1 in the first bin, and then for each i, put xi in the first bin that has
room for it, or start a new bin if there is no room in any of the used bins. This
algorithm is called as First-Fit.

Theorem 1 The First-Fit algorithm uses at most twice plus one bins than the
best possible number.

Proof: First-Fit cannot leave two bins less than half-full; otherwise the items
in the second bin could have been placed in the first bin. Thus the number of
bins used is no more than twice the sum of sizes of all items (rounded up). The
theorem follows since the best solution cannot use than less than the sum of all
the sizes. Suppose we use b bins. If we match the bins in pairs and put together
then we have b−1

2
≤ bb

2
c ≤
∑n

i=1 xi ≤ OPT ⇒ b ≤ 2 ·OPT + 1.

4



Lecture 16 REFERENCES

There are algorithms for bin packing which give almost optimal solutions
and there are also some backtracking and dynamic programming algorithms
but they are more involved.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

5


	Introduction
	Preliminaries
	A Special Knapsack Problem: Subset Sum
	Greedy Algorithm:
	Backtracking Algorithm:
	Dynamic Programming

	Longest Common Subsequence (LCS)
	Independent Set in Trees
	Bin Packing
	Greedy Algorithm


