
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 13

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we give a brief introduction to Graph Theory.

2 Preliminaries

A graph G with n vertices (nodes) and m edges (arcs) consists of a vertex set
V(G) = {v1, v2, . . . , vn} and an edge set E(G) = {e1, e2, . . . , em}, where each
edge is an unordered pair of vertices. We write uv or {u, v} for an edge between
u and v. If uv ∈ E(G), then u and v are adjacent. The vertices contained in an
edge are called its endpoints.

We can visualize a graph on paper by assigning a point to each vertex and
drawing a curve for each edge between the points representing its endpoint. The
vertices can be any objects like cities in a country, points in the plane, etc. and
edges are showing relation between the two objects. The graphs can model lots
of problems. Graphs can also model people and their friendship relations. In
this course we will denote a graph by G = (V, E).

A directed graph or digraph is a graph whose edges are ordered pairs. The
edges are represented as (u, v) which means that there is an edge from u to v.
Sometimes we consider more general models that allow repeated edges or edges
with both endpoints same (loops). Such graphs are called multi-graphs. In this
course we usually consider only simple graphs. Note that simple graphs have at
most

(
n
2

)
= θ(n2) edges.

Let G = (V, E) be an undirected graph. An induced subgraph of G is a graph
H = (V ′, E ′) such that V ′ ⊆ V and E ′ includes all edges in E both of whose
incident vertices are in V ′. If we just have E ′ ⊆ E then it is called as subgraph
of G.

A degree of a vertex v is represented by dv(G) or degv(G) and is the number
of vertices adjacent to that vertex.

1



Lecture 13 3 REPRESENTATION OF GRAPHS FOR ALGORITHMS

Theorem 1 Let G = (V, E) be an undirected graph. Then
∑

v∈V degv(G) = 2|E|

Proof: The equation follows by double counting.

3 Representation of Graphs for Algorithms

There are two ways to represent graphs: as a collection of adjacency lists or as
an adjacency matrix. Adjacency list is preferred for sparse graphs, i.e., graphs
having small number of edges like O(n). Adjacency matrix is preferred for dense
graphs, i.e., graphs having large number of edges like Ω(n2).

The adjacency-list representation of a graph G = (V, E) consists of an array
Adj of |V | lists, one for each vertex of V. For each u ∈ V, the adjacency list
Adj[u] contains pointers to all vertices v such that there is an edge uv ∈ E
(the elements of the list can be in any arbitrary order or in a sorted order).
Irrespective of whether the graph is directed or undirected, the adjacency-list
representation has the memory amount O(|V | + |E|). The disadvantage is that
determining if an edge uv is present in the graph or not can take O(degv(G))
time.

For the adjacency matrix representation of a graph G = (V, E), we assume
that the vertices are numbered 1, 2, . . . , |V | in some arbitrary manner. The
adjacency matrix is a |V |× |V | array A = (aij) such that

aij =

{
1 if ij ∈ E
0 otherwise

The adjacency matrix of a graph requires θ(|V |2) space independent of the
number of edges in the graph. However checking if uv ∈ E is in θ(1).

Our graphs can be weighted also (for which each edge has an associated
weight) and can be easily represented by both methods described above. A
complete graph or clique is a simple graph in which every pair of vertices
forms an edge and thus |E| =

(
n
2

)
. An independent set in a graph is a vertex

subset S ⊆ V(G) such that the induced subgraph G[S] has no edges. The
complement of a simple graph, written as G, is a graph with same vertex set
as G such that u, v are adjacent in G if and only if u, v are not adjacent in G.

Example: Job Assignments and Bipartite Graphs:
Suppose we have m jobs and n people and each person can do some of the jobs.
Can we make assignments to fill the jobs? We model the available assignments
by a graph having a vertex for each job and each person, putting job j adjacent
to person p if p can perform job j. If each person can do only one job, then the
assignment problem is the matching problem.

A graph is bipartite if its vertex set can be partitioned into at most two
independent sets V1, V2 (like the person-job graph above). Then we represent
it as G(V1, V2, E). A complete bipartite graph is a bipartite graph in which
the edge set consists of all pairs having a vertex from V1 and V2. For bipartite
graphs, we can have a simple adjacency matrix as follows: We have a matrix

2



Lecture 13 3 REPRESENTATION OF GRAPHS FOR ALGORITHMS

(array) of size |V1|× |V2|, namely A = (aij) such that

aij =

{
1 if ij ∈ E
0 otherwise

Note that this array is not symmetric anymore.
A walk of length k is a sequence v0, v1, . . . , vk of vertices such that ei =

{vi−1, vi} ∈ E. A path is a walk with no repeated vertex. A cycle is a walk
such that the first and the last vertex are the same, i.e., v0 = vk. A cycle is
simple if there is no repeated vertex.

Theorem 2 If there is a walk between u and v in G, then there is a path between
them as well.

An undirected graph is connected if every pair of vertices is connected by a
path. The connected components of a graph are the equivalence classes of
vertices under the “connected” relation.

A tree is a connected undirected graph with no cycles. A DAG (directed
acyclic graph) is a directed graph with no cycles. The following three statements
are equivalent:

1. G is a tree.

2. G is connected and |E| = |V |− 1.

3. G has no cycle and |E| = |V |− 1.

Theorem 3 If G is a tree then |E| = |V |− 1.

Proof: First note that there is a vertex which is a leaf (a vertex of degree one)
since there is no cycle. Then proof follows by induction on |V |.

A rooted tree is a tree in which one of the vertices is distinguished from
the others, called the root. We often call vertices of a rooted tree (in general
for directed graphs) as nodes. If the last edge on the path from the root r of
a tree T to a node x is (y, x), then y is the parent of x and x is the child of
y. A node with no children is called a leaf. A node which is not a leaf is called
as an internal node. Consider a node x in a rooted tree T with root r. Any
node y on the unique path from r to x is called as an ancestor of x. If y is an
ancestor of x, then x is a descendant of y.

Rooted trees are often used to show hierarchial (data) structures. Because
of this we can make the tree directed towards the leaves or at least put the root
on top of the tree. Then the root is connected to other nodes, which are at the
level one of the hierarchy; they in turn are connected to other nodes at level
two and so on. The number of children of a node x in a rooted tree is called
the out-degree of x. The length of the path from the root r to a node x is
called as the depth of x in T . The largest depth of any node in T is called as
the height of T .

3



Lecture 13 REFERENCES

Rooted trees of out-degree 2 (every vertex has out-degree at most 2) are
called binary trees. In this case we identify children by left (for first) and
right (for second). The common representation of trees is the linked-list rep-
resentation in which each node keeps pointers (as an array for binary trees;
otherwise linked lists) to its children and also a pointer to its parent. See Fig-
ures 2 and 3 for examples of the tree given in Figure 1. We will see another
implicit representation for binary trees in the next lecture.

r 

e d c 

a b 

Figure 1: Tree T

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

4



Lecture 13 REFERENCES

r 

e d c 

b a 

Nil Nil 

Nil 

Nil Nil Nil 

First Child Parent Next Sibling 

Figure 2: Representation of tree T when we do not know how many maximum
children any vertex can have.

5



Lecture 13 REFERENCES

r 

e d c 

b a 

Nil Nil 

Nil 

Child 1 Parent Child 2 Child 3 

Nil Nil 

Nil Nil Nil Nil Nil Nil Nil Nil 

Nil 

Figure 3: Representation of tree T when we know that any vertex can have at
most three (or any fixed number) children.

6


	Introduction
	Preliminaries
	Representation of Graphs for Algorithms

