CMSC 351 - Introduction to Algorithms
Spring 2012
Lecture 12

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at Hashing.

2 Hashing

A hash table is a generalization of the simpler notion of an ordinary array. Many
applications require a dynamic set that supports only the dictionary opera-
tions: Insert, Search and Delete. A hash table is an effective data structure for
implementing dictionaries. If an application needs dictionary operations with
keys drawn from the universe U ={0, 1,...,u—1} where u is not too large, then
we can have direct-address table method by using an array T[0,1,...,u— 1].
What about when the universe U is so large that storing a table T of size U]
may be impractical and in addition the set K of keys actually stored may be so
small relative to U (e.g. keys in a dictionary). With hashing, we can reduce
space to 0(|K|) with search time only O(1) (though in average). With direct ad-
dressing, an element with key k is stored in slot k. With hashing, this element
is stored in slot h(k); that is, a hash function is used to compute the slot from
the key k. Here h maps the universe U of keys into the slots of a hash table
TIO,1,...,m—1],ie,, h: U —{0,1,...,m — 1}. We say that an element with
key k hashes to slot h(k) or h(k) is the hash value of key k.

The main issue is that two keys may hash to the same slot. This is called as
a collision for which we see effective techniques in this lecture. One idea is to
make h appear to be “random” to avoid collisions.

3 Hashing Functions

The average performance of hashing depends on how well it distributes the
keys in the m slots, i.e., how “random” it is to avoid collisions. We consider

Lecture 12 3 HASHING FUNCTIONS

integers or characters, fixed length arrays (of integers) and variable length arrays
(strings):

1. Hashing integers: The original proposal of Cater and Wegman was to
pick a prime p > u and define

hab(x) = ((ax+ b) mod p) mod m

where a, b are randomly chosen integers mod p and a # 0.

2. Hashing fixed-length array: The input is a vector X = {Xg, X1,...,Xn_1}
of h integers (or bytes/characters) and we define

Rl
h(x = Z)hz,b(xi)

i=0

where each h;ll’b is constructed by choosing a,b randomly mod p with
a # 0. Here again we choose p to be a prime greater than wu.

3. Hashing strings: If the length of a string can be bounded by a small
number it is best to use a fixed-length array solution. Now we assume that

we want to hash X = {xg,x1,...,x} where a bound on L is not known a
priori. Again if x; € {0,1,...,u— 1} then let p > max{u, m} be a prime
and define

L
hc (f) = ha‘b ((Z XiCi) mod ‘p)
i=0
where a, b&c are randomly chosen integers mod p with a,c,# 0.

Definition 1 A hash function is called universal if ¥V x,y € U,x # y we have
Prh(x) = h(y)] < L.

Note that this is the ideal case in which any two keys of the universe collide
with probability at most % All functions above provide such a guarantee.
Note that without randomness we cannot guarantee such functions. Universal
hashing guarantees any given element is equally likely to hash into any slot.

However if we use any approach then there is a chance of collisions. So what

are the solutions to prevent collisions?

1. Collision Resolution by Chaining
In chaining we put all elements that hash to the same slot in a linked list.
The slot j contains a pointer to the head of the list of all stored elements
that hash to j; if there are no such elements then slot j contains NIL. The
dictionary operations are as follows:

e Hash-Insert(T, X)
Insert X at the head of the list T[h(key[X])]

Lecture 12 REFERENCES

e Hash-Search(T, k)
Search for an element with key k in the list T[h(k)]

e Hash-Delete(T, X)
Delete X from the list T[h(k)]

The worst case running time for insertion is O(1) though for delete and
search it is O(|T[h(X)]]). Because of the uniformity property, the average
length of each list is .- where n is the number of keys and m is the size of
T. Thus running time for delete and search is in O(1 + ;+). Thus if m is
at least proportional to n, then n = O(m) and the running time is O(1)
for all operations.

2. Open Addressing: Linear Probing
In open addressing, all elements are stored in the hash table itself and it
avoids pointers (and waste of memory) altogether. Thus in open address-
ing, the hash table can fill up so that no further insertion can be made.
Instead in the case of collision we need to examine (probe) a sequence of
slots.

In the simplest form of open addressing, we are using the method of linear
probing as follows: given a key k, the first slot probed is T[h(k)]. We next
probe T[h(k) + 1] and so on up to slot T[m — 1]. Then we wrap around to
slots T[0], T[1],... until we finally probe slot T[h(k)]. Note here that the
initial probe position determines the entire probe. In insertion we probe
according to this order until we find an empty space or give an error of
“hash table overflow”. For search, we probe accordingly until we find the
element or an empty slot.

Deletion from an open-address hash table is difficult. When we delete a
key from slot i, we need to mark it as “deleted” instead of NIL such that
search skips over it, but Insert can insert it. Again if load factor o = = is
constant then Insert and Search can take O(1) in average. However Delete
can cause problems and make operations no longer dependent in «. For
this reason Chaining is more commonly selected as a collision resolution
technique when keys must be deleted often. Sometimes if the number of
deletions is a lot we can do re-hashing, i.e., hash in a new array.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

	Introduction
	Hashing
	Hashing Functions

