
CMSC 351 - Introduction to Algorithms

Spring 2012

Lecture 11

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at QuickSort.

2 Quicksort

As we have seen in the mergesort, by divide-and-conquer, we could divide the
problem into two equal-sized subproblems and solve each problem separately
and combine the solutions to get a O(n logn) algorithm. But we needed to
have extra space as it was not an in-place sort.

Quicksort is a divide-and-conquer algorithm which spends most of the effort
in the divide step and very little in the conquer step. Suppose we know a number
X (called pivot) such that one-half of the elements are greater than or equal to
X and one-half of the elements are smaller than X. We can compare all elements
by n comparisons and partition the sequence into equal parts (we can do this
without additional space). This is the divide step. We sort each subsequence
recursively and the combine step is trivial since the two parts already occupy
correct positions in the array and we do not need additional space.

Unfortunately we do not know X, but it works no matter which number is
selected. However to do it in-place we use two pointers L and R, where L points
to the left side of the array and R points to the right side of the array. The
pointers move towards each other such that:

Induction Hypothesis:
At step k of the algorithm, pivot ≥ xi for all i < L and pivot< xj for all
j > R.

The base case is trivial and when L > R we are done. Two cases to consider:
if either xL ≤ pivot or xR > pivot we can move one of them and induction

1

Lecture 11 2 QUICKSORT

hypothesis is preserved. Otherwise xL > pivot and xR ≤ pivot. In this case we
do a swap and move both of them. The whole partition needsO(n) comparisons.

Divide-and-conquer algorithms work best when the parts have equal sizes,
i.e., the pivot should be the median. We can find it also but not in this class.
However choosing a random element from the sequence is also a good choice as
we see in the analysis. At the end of the partition we put the pivot in its correct
place, i.e. do swap(xpivot, xL). Once we have the procedure Partition, the
Quicksort algorithm is as follows:

Algorithm 1 Quick-Sort(L, R, X)

1: if L < R then
2: Partition(X, L, R);
3: Quick-Sort(L,pivot-index - 1, X);
4: Quick-Sort(pivot-index + 1, R, X);
5: end if

Running Time: The running time of quicksort depends on the particular
input. If the pivot always partitions into two equal parts then the running
time is T(n) = 2T(n

2
) + O(n) ; T(2) = 1 which gives T(n) = O(n logn). This

is similar to merge sort. However if the pivot is very close to one side of the
sequence then the running time can be as bad as O(n2): say each time the pivot
is the smallest element in the sequence, we do n−1 comparisons and place only
the pivot in the right place, then n − 2 comparisons, etc. In the algorithm
we are choosing the pivot at random, but still there is a chance that we pick
the smallest element at thus end up making O(n2) comparisons. However the
chance is very small as we now show.

First each element has the same probability 1
n

of being picked as the pivot.
if the ith element is selected as the pivot, then the running time is T(n) =
(n− 1) + T(i− 1) + T(n− i). Thus the average running time (versus the worst
case running time that we have usually considered so far in this class) is:

T(n) =
1

n

(n∑
i=1

(n− 1) + T(i− 1) + T(n− i)
)

= (n− 1) +
1

n

(n∑
i=1

T(i− 1) + T(n− i)
)

= (n− 1) +
1

n

n∑
i=1

T(i− 1) +
1

n

n∑
i=1

T(n− i)

= (n− 1) +
2

n

n−1∑
i=0

T(i)

As we have seen in the recurrence relations with full history this gives T(n) =
O(n logn). In practice Quicksort is really fast and deserves the name.

2

Lecture 11 6 EXTRA READING

3 Lower Bound for Sorting

We could improve the running time from O(n2) (insertion or selection sort)
to O(n logn) (merge sort or quicksort). Can we do still better for comparison
based (and not radix sort, for example). Unfortunately the answer is NO. We
can use information theory to show that indeed any algorithm needs at least
Ω(n logn) comparisons. See the proof in the book [1] if you are interested.

4 Maximum and Minimum Elements

The Problem: Find the maximum and minimum elements in a given array of
distinct elements.

The straightforward solution is 2n−3 comparisons: n−1 for max and n−2
for min. Can we do better? If we try to do inductively from n to n− 1 we end
up paying 2n. But what about if we go from n to n− 2? Assume we know the
solution for n − 2. Consider xn−1 and xn and say we know Max and Min so
far. First we compare xn−1 and xn and then compare the max of them with
Max and the min of them with Min. So by 3 comparisons we update both Max
and Min. Overall we need 3n

2
comparisons. Can we do better by considering

xn−2,xn−1,xn
? The answer is NO by any method.

5 The Order Statistic or Selection Problem

The Problem: Given a sequence S = x1, x2, . . . , xn of elements, and integer k
such that 1 ≤ k ≤ n, find the kth-smallest element in S.

If k is very close to 1 or n, then we can run the algorithm for max or min k
times. So the running time isO(kn). We can also sort the sequence inO(n logn)
time and find the kth element in O(n) time. So if O(kn) > O(n logn), i.e.,
k = Ω(logn) then sorting is faster.

But can we do better? YES. We can divide-and-conquer the same way
as quicksort. In quicksort, the sequence is partitioned by a pivot into two
subsequences. Here we need only to determine which subsequence contains the
kth element and then continue recursively only for that subsequence. The rest
of the elements can be ignored.

Running Time: As in Quicksort, the worst case is O(n2) but we can
show the average running time is O(n). In practice it is very fast even though
there are some algorithms with running time O(n) in worst case. Indeed this
algorithm is the best for finding only the median, i.e., k = n

2
.

6 Extra Reading

Read Sections 6.10 and 6.11 from the book [1] yourself. Due to lack of time we
cannot cover them in the class. But there are very cute algorithms there and
you will enjoy reading them.

3

Lecture 11 REFERENCES

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach

4

	Introduction
	Quicksort
	Lower Bound for Sorting
	Maximum and Minimum Elements
	The Order Statistic or Selection Problem
	Extra Reading

