CMSC 351 - Introduction to Algorithms
Spring 2012
Lecture 9

Instructor: MohammadTaghi Hajiaghayi
Scribe: Rajesh Chitnis

1 Introduction

In this lecture we will look at Insertion Sort, Selection Sort and Merge Sort.

2 Notations

Recall the following notations that we will be using here : 2?11 , | [, min, max, U, N

3 Sorting

Sorting is one of the most extensively studied problems in computer science. It is
the basis for many algorithms and it consumes a large proportion of computing
time for many typical applications. There are dozens of sorting algorithms but
we cover only a few in this course.

The Problem: Given n numbers x7,X2,...,X, we want to arrange them
in increasing order. In other words, we want to find a sequence of distinct
indices T < i3,12,...,in < m such that xi;, < x4, < ... < x4,,. For now we

assume all numbers are distinct although all algorithms we discuss also work for
non-distinct numbers as well.

Definition: A sorting algorithm is called in-place if no additional work
space is used besides the initial array that holds the elements.

4 Insertion Sort

Insertion Sort is a sorting algorithm using induction. Suppose we know how to
sort 1 — 1 elements and we are given n numbers to sort. We can start with
n — 1 numbers and then put the n'™ number in its correct place by scanning
the n — 1 sorted numbers until the correct place to insert is found.



Lecture 9 6 MERGE SORT

The total number of comparisons for sorting n numbers may be as high as
1+24+...+(n—1)= w = 0(n?). Also for inserting, and thus moving, in
the worst case we need n — 1 elements to be moved and hence the total number
of movements is also O(n?). We can have the elements in the array and use
binary search on the sorted elements. Then the total number of comparisons is
>, llogi] =06(nlogn). However the number of movements is still O(n?).

5 Selection Sort

We can select the maximum number and put it at the end of the array by
swapping it with the other elements. We recursively sort the rest of the elements.
The advantage over insertion sort is that only n — 1 data movements (swaps)
are required versus O(n?) needed for insertion sort. However it takes n — 1
comparisons to find the maximum element and so selection sort needs O(n?)
comparisons as compared to O(nlogn) comparisons needed for insertion sort.
Using other data structures such as AVL trees or binary search trees we can
do comparisons in O(nlogn). We will cover binary search trees later in this
course.

In Bubble Sort we swap in the unsorted part of the array (a bit of waste).
If A[i] < A[i— 1] then it swaps A[i] and A[i — 1]. Recall in selection sort we
only keep the index of the maximum element.

6 Merge Sort

Merging Operation: Denote the first set by a;, az,...,an and the second set
by b1,bz,...,bn. We assume both are sorted in increasing order. Scan the first
set until the right place to insert by is found and insert it. Then continue the
scan from that place until the right place to insert b, is found, and so on. Since
the b{s are sorted we never need to go back. The total number of movements
is O(n+m).

Data movement is inefficient if we insert the b{s, however if we use a tem-
porary array where each element is copied exactly once then the overall time is
O(n+ m). It is not an in-place sorting algorithm.

Merge Sort is a divide-and-conquer (recursive) algorithm as follows:

1. Divide the sequence into parts of close-to-equal size.
2. Sort each part separately recursively.
3. Merge the two parts into one sorted array.

Let T(n) denote the time complexity for sorting n numbers. Then the recurrence

is
T2n) =2T(n)4+0(n); T(2) =1



Lecture 9 REFERENCES

As we have seen in Chapter 3 (Master Theorem) of the book [I], it is O(nlogn)
which is much better than insertion or selection sorts. However it requires addi-
tional storage to copy the merged sets and is not an in-place sorting algorithm.

References

[1] Udi Manber, Introduction to Algorithms - A Creative Approach



	Introduction
	Notations
	Sorting
	Insertion Sort
	Selection Sort
	Merge Sort

