
Approximate Nearest Centroid Embedding for
Kernel k-Means

Ahmed Elgohary, Ahmed K. Farahat, Mohamed S. Kamel, and Fakhri Karray
University of Waterloo, Waterloo, Canada N2L 3G1

{aelgohary,afarahat,mkamel,karray}@uwaterloo.ca

Abstract

This paper proposes an efficient embedding method for scaling kernel k-means on
cloud infrastructures. The embedding method allows for approximating the com-
putation of the nearest centroid to each data instance and, accordingly, it elim-
inates the quadratic space and time complexities of the cluster assignment step
in the kernel k-means algorithm. We show that the proposed embedding method
is effective under memory and computing power constraints, and that it achieves
better clustering performance compared to other approximations of the kernel k-
means algorithm.

1 Introduction

Modern cloud computing infrastructures tend to be composed of several commodity nodes, each
of which is of a very limited memory and computing power [2, 6, 11]. The kernel k-means is a
commonly-used data clustering algorithm that is capable of handling datasets of arbitrary complex
structures and capturing nonlinearity in the feature space. However, due to its kernelized nature,
it is always challenging to parallelize the kernel k-means algorithm [7] on cloud infrastructures to
handle massively distributed datasets. In this paper, we present an approximate kernel k-means
algorithm that better suits modern cloud infrastructures. Our approach is based on computing a
low-dimensional embedding for each data instance by the proposed Approximate Nearest Centroid
(APNC) embedding method. The resulting embeddings are then used to approximate the cluster
assignment step obviating the need to work with kernels in kernel k-means iterations. We start in
Section 2 by giving a necessary background on the kernel k-means followed by a review of recently
proposed approximations. We describe our embedding method in Section 3 and demonstrate the
effectiveness of the proposed approach through empirical evaluation in Section 4.

2 Kernel k-Means and Approximations

The kernel k-means [7] is a variant of the well-known k-means algorithm [10] which works on a ker-
nel matrix that encodes all pairwise inner-products between n data instances mapped to a typically
high-dimensional space. Let φ(i) denote the mapping of a data instance i into a kernel space en-
dowed implicitly by a kernel function κ(., .). The kernel k-means algorithm tries to assign each data
instance i to one of k possible clusters such that the `2-loss function

∑k
c=1

∑
i∈Πc

||φ(i) − φ̄(c)||2
is minimized [7]. We use Πc to denote the set of data instances assigned to the cluster c and φ̄(c) to
denote the centroid of the data instances in Πc (i.e. φ̄(c)

= 1
nc

∑
i∈Πc

φ(i), where nc is the number
of instances in Πc). The `2-loss function is minimized iteratively by assigning each data instance i
to the cluster c whose centroid φ̄(c) is the nearest to φ(i) as

π(i) = arg minc

∥∥∥φ(i) − φ̄(c)
∥∥∥

2
. (1)

1

Since neither φ(i) nor φ̄(c) can be accessible explicitly, the square of the `2-norm in Eq. (1) is
expanded in terms of entries from the kernel matrix K as∥∥∥φ(i) − φ̄(c)

∥∥∥2

2
= Kii −

2

nc

∑
a∈Πc

Kia +
1

n2
c

∑
a,b∈Πc

Kab . (2)

That expansion makes the computational complexity of finding the nearest centroid to each data
instance of O(n) and that of a single iteration over all data instance of O(n2). Further, an O(n2)
space needs to be used to store the kernel matrix K. These quadratic complexities hinders applying
the kernel k-means algorithm to large datasets.

Recent approximations have been proposed to allow using kernel k-means for large-scale datasets.
In [4], it was suggested to restrict the clustering centroids to a subspace of data instances whose rank
is at most l where l � n. That approximation was shown to significantly reduce the runtime and
space complexity of the kernel k-means. It was also noticed by the authors that their method is equiv-
alent to applying the original kernel k-means algorithm to the rank-l Nyström approximation [8] of
the entire kernel matrix. The accuracy of the Nyström approximation is however determined by the
value of l which has to be increased as the data size increases [8]. Later, Chitta et al. [5] exploited
the Random Fourier Features (RFF) [14] to propose a fast algorithm for approximating the kernel k-
means. However, that approximation inherits the limitation of the used RFF approach of being only
applicable to shift-invariant kernels. RFF also requires representing the data instances into a vector
space. Furthermore, the theoretical and empirical results of Yang et al. [16] showed that the kernel
approximation accuracy of RFF-based methods depends on the properties of the eigenspectrum of
the original kernel matrix which vary among different datasets. In our experiments, we show that
the proposed approximation achieves superior clustering performance to the approximations of [4]
and [5].

3 Approximate Nearest Centroid Embedding

Our embedding method is based on the results of Indyk [9] that showed that the `p-norm of a d-
dimensional vector v can be estimated by means of p-stable distributions. Given a d-dimensional
vector r whose components are i.i.d. samples drawn from a p-stable distribution over R, the `p-norm
of v is given by ||v||p = αE[|

∑d
i=1 viri|] , where vi denotes the i-th component of v and α is a

positive constant. It is known that the standard Gaussian distribution N (0, 1) is 2-stable [9] which
means that it can be employed to compute the `2-norm of Eq. (1) as

||φ− φ̄||2 = αE[|
d∑
i=1

(φi − φ̄i)ri|] , (3)

where d is the dimensionality of the space endowed by the used kernel function and the components
ri ∼ N (0, 1). The expectation above can be approximated by the sample mean of multiple values
for the term |

∑d
i=1(φi − φ̄i)ri| computed using m different vectors r each of which is denoted as

r(j). Thus, the `2-norm in Eq. (3) can be approximated as

||φ− φ̄||2 ≈
α

m

m∑
j=1

|
d∑
i=1

(
φir

(j)
i − φ̄ir

(j)
i

)
| . (4)

Define two m-dimensional embeddings y and ȳ such that yj =
∑d
i=1 φir

(j)
i and ȳj =∑d

i=1 φ̄ir
(j)
i or equivalently, yj = φTr(j) and ȳj = φ̄

T
r(j). Eq. (4) can be expressed in terms of

y and ȳ as

||φ− φ̄||2 ≈
α

m

m∑
j=1

|yj − ȳj | =
α

m
‖y − ȳ‖1 . (5)

Since all ofφ, φ̄ and r(j) are intractable to explicitly work with, our next step is to kernelize the com-

putations of y and ȳ. Without loss of generality, let Tj = {φ̂
(1)
, φ̂

(2)
, ..., φ̂

(t)
} be a set of t randomly

chosen data instances embedded and centered into the kernel space (i.e. φ̂
(i)

= φ(i)− 1
t

∑t
j=1 φ

(j)).

2

According to the central limit theorem, the vector r(j) = 1√
t

∑
φ∈Tj φ approximately follows a

multivariate Gaussian distribution N (0,Σ) where Σ is the covariance matrix of the underlying dis-
tribution of all data instances embedded into the kernel space [12]. But, according to our definition
of y and ȳ, the individual components of r(j) have to be independent and identically Gaussians.
To fulfil that requirement, we make use of the fact that decorrelating the variables of a joint Gaus-
sian distribution is enough to ensure that the individual variables are independent and marginally
Gaussians. Using the whitening transform, r(j) is decorrelated as

r(j) =
1√
t
Σ̃−1/2

∑
φ∈T (j)

φ , (6)

where Σ̃ is an approximate covariance matrix estimated using a sample of l data instances (denoted
as L) embedded into the kernel space and centred as well.

With r(j) defined as in Eq. (6), the computation of y and ȳ can be fully kernelized by following
similar simplification steps as in [12]. Accordingly, y and ȳ can be computed as follows. Let KLL
be the kernel matrix of L and define a centering matrix H = I − 1

l ee
T where I is an l × l identity

matrix and e is a vector of all ones. Denote the inverse square root of the centered version of KLL
as E.1 The embedding of a data instance i is then given by

y(i) = f
(
φ(i)

)
= RΦT:Lφ

(i) = RKLi , (7)

such that Φ:L is a d × l matrix of the elements of L and KLi is an l-dimensional vector whose
components are the kernel between i and all data instance in L. R is anm× l matrix whose rows are
computed as Rj: = sTEH , where s is an l-dimensional binary vector indexing t randomly chosen
values from 1 to l for each j. Using Eq. (7) the embedding of the centroid of a cluster c is given by

ȳ(c) = f
(
φ̄

(c)
)

=
1

nc
RΦT:L

∑
i∈Πc

φ(i) =
1

nc

∑
i∈Πc

RΦT:Lφ
(i) =

1

nc

∑
i∈Πc

y(i) . (8)

From Equations (1) and (5), it can be noticed that each data instance i can be assigned to an approx-
imate nearest cluster using the embedding of i denoted as y(i) and the embeddings of the current
cluster centroids ȳ(c) for c = 1, 2, ..., k, as

π̃(i) = arg minc

∥∥∥y(i) − ȳ(c)
∥∥∥

1
. (9)

Now, it can be noticed that Eq. (9) obviates the need to the expansion in Eq. (2) and instead,
cluster assignments of Eq. (1) can be made only using pre-computed embeddings y(i) for each
data instance i. Furthermore, at the end of each iteration, Eq. (8) allows for computing updated
embeddings of the new cluster centroids only using the embeddings of the data instances assigned to
each cluster. Accordingly, Equations (8) and (9) suggest the following approximate kernel k-means
algorithm. As a preprocessing step, an embedding y(i) for each data instance i is computed using
Eq. (7). Afterwards, a Lloyd-like k-means [13] iterations are performed over the embeddings, with
the `2-distance replaced with the `1-distance, until convergence. The resulting cluster assignments
represent an approximate clustering using the kernel k-means algorithm. In Appendix A., we outline
the steps of the proposed algorithm.

Similar to the approximate kernel k-means approach presented in [4], APNC embedding requires
computing an l × l kernel matrix KLL of a sample of l data instances. However, intuitively, we
expect that APNC kernel k-means is capable of achieving significantly higher clustering accuracy
with small values of l since the sample data instances are used to only estimate the covariance
matrix of the underlying distribution. Given a fixed computing infrastructure, that property makes
APNC kernel k-means able to handle larger datasets while providing reasonable clustering accuracy.
Furthermore, after computing the embeddings of all data instances, the clustering step is done by
a linear k-means variant which is easy to parallelize on distributed cloud infrastructures by sharing
the embeddings of cluster centroids among all nodes and updating them after each iteration.2

1The kernel matrix over centered vectors can be calculated in terms of the kernel matrix over original
vectors as HKLLH . Its inverse square root can be computed as Λ−1/2V T where, Λ and V are the eigenvalues
and eigenvector matrices of HKLLH respectively.

2The details of the distributed implementation are to be included in an extended version of this paper.

3

4 Experiments

We evaluated the proposed algorithm by conducting experiments on medium and large-scale
datasets. The medium-scale experiments were carried out on a single machine using four datasets
denoted as PIE, ImageNet-50k, USPS and MNIST. PIE is a subset of 11, 554 face images under
68 classes [15]. ImageNet-50k is a subset of 50, 000 images under 164 classes, sampled from the
1, 262, 102 images of the full ImageNet dataset used by Chitta et al. [4]. Both of USPS and MNIST
are handwritten digits under 10 classe and their sizes are 9, 298 and 70, 000 respectively [3]. We
used an RBF kernel for PIE and ImageNet-50k, a neural kernel for USPS and a polynomial kernel
for MNIST. We used the same kernel parameters of [4]. Clustering accuracy is measured by the
Normalized Mutual Information (NMI) between clustering labels and ground-truth labels.

In the medium-scale experiments, we compared our approach (APNC) to the approximate kernel
k-means approach (Approx KKM) of [4] and the two Random Fourier Features based algorithms
(RFF) and (SV-RFF) presented in [5]. For APNC and Approx KKM we used three different values
for the number of samples l while fixing the parameter t in APNC to 40% of l and m to 1000. For
a fair comparison, we set the number of fourier features used in RFF and SV-RFF to 500 to obtain
1000-dimensional embeddings as in APNC. Table 1 summarizes the average and standard deviation
of the NMIs achieved in 20 different runs of each algorithm for each dataset using each value for l.
Being limited to only shift-invariant kernels, both RFF and SV-RFF were only used for the datasets
PIE and ImageNet-50k. It can be observed from Table 1 that the proposed method in this paper
APNC is significantly superior to all the other methods especially when l = 50 which matches our
intuition behind the scalability of APNC embedding. The results achieved by APNC method are
also of smaller variations in clustering accuracy in most of the datasets which makes APNC more
robust to the randomness and hence, more reliable. The poor performance of RFF and SV-RFF
can be explained by the results of Yang et al. [16] that showed that for a fixed number of fourier
features, the approximation accuracy of RFF-based methods are determined by the properties of the
eigenspectrum of the kernel matrix being approximated.

Finally, we used MapReduce [6] to implement a parallel version of APNC kernel k-means on an
Amazon EC2 [1] infrastructure of 20 nodes to cluster the full ImageNet dataset [4]. The last row in
Table 1 shows the achieved NMIs. The best reported NMI for the full ImageNet dataset was 10.4%
[4]. The table shows that, in addition to being easy to parallelize on cloud infrastructure, APNC
kernel k-means is able to achieve superior clustering accuracy using a very small sample size.

Table 1: The NMIs of different kernel k-means approximations. For each dataset the best performing
method(s) for each l according to a t-test (with 95% confidence) is(are) highlighted in bold.

l = 50 l = 100 l = 300
Methods PIE - 11K, RBF

RFF 5.2± 0.12 5.2± 0.12 5.2± 0.12
SV-RFF 5.15± 0.11 5.15± 0.11 5.15± 0.11

Approx KKM 13.99± 0.6 14.66± 1.01 15.95± 0.83
APNC 18.62± 0.37 19.5± 0.38 20.12± 0.35

ImageNet - 50K, RBF
RFF 6.12± 0.04 6.12± 0.04 6.12± 0.04

SV-RFF 5.96± 0.06 5.96± 0.06 5.96± 0.06
Approx KKM 14.67± 0.25 15.12± 0.17 15.27± 0.15

APNC 15.66± 0.14 15.78± 0.14 15.76± 0.08
USPS - 9K, Neural

Approx KKM 37.60± 17.50 50.68± 11.28 57.17± 5.44
APNC 52.88± 7.25 55.34± 4.15 58.22± 0.87

MNIST - 70K, Polynomial
Approx KKM 19.07± 1.45 20.73± 1.30 22.38± 1.06

APNC 23.00± 1.57 23.08± 1.58 23.86± 1.82

Full ImageNet - 1.2M, RBF
Approx KKM Best reported NMI is 10.4 [4].

APNC 11.29± 0.03 11.28± 0.06 11.30± 0.01

4

Acknowledgment

We thank Radha Chitta and the authors of [4] for sharing their processed ImageNet dataset with us.

References

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/.
[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, and

A. Rabkin. A view of cloud computing. Communication of the ACM, 53(4):50–58, 2010.
[3] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM Trans. Intell.

Syst. Technol., 2(3), May 2011.
[4] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Approximate kernel k-means: Solution to large

scale kernel clustering. In ACM SIGKDD KDD, pages 895–903, 2011.
[5] R. Chitta, R. Jin, and A. K. Jain. Efficient kernel clustering using random Fourier features. In

IEEE ICDM, pages 161–170, 2012.
[6] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun.

ACM, 51(1):107–113, Jan. 2008.
[7] I. Dhillon, Y. Guan, and B. Kulis. Kernel k-means, spectral clustering and normalized cuts. In

ACM SIGKDD KDD, pages 551–556, 2004.
[8] P. Drineas and M. W. Mahoney. On the Nyström Method for approximating a Gram matrix for

improved kernel-based learning. Journal of Machine Learning Research, 6:2153–2175, 2005.
[9] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream compu-

tation. In Proceedings of the Symposium on Foundations of Computer Science, 2000.
[10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surv.,

31(3):264–323, 1999.
[11] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce. In Proceed-

ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10,
pages 938–948, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.

[12] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 34(6):1092–1104, 2012.

[13] S. Lloyd. Least squares quantization in PCM. Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[14] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages
1177–1184, 2007.

[15] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression database. IEEE
Trans. Pattern Anal. Mach. Intell., 25(12):1615–1618, Dec. 2003.

[16] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs random Fourier
features: A theoretical and empirical comparison. In NIPS, pages 485–493, 2012.

5

Appendix A. APNC Kernel k-Means Algorithm

Algorithm 1 APNC Kernel k-Means
Input: Dataset X of n data instances, Kernel Function κ(., .),
APNC Parameters l,m, and t, Number of Clusters k
Output: Clustering Labels l

1: L ← uniform sample of l data instances from X
2: KLL ← κ(L,L)
3: H ← I − 1

l ee
T

4: KLL ← HKLLH
5: [V,Λ]← eigen(KLL)
6: E ← Λ−1/2V T

7: Initialize R← [0]m×l
8: for r = 1 : m
9: T ← select t unique values from 1 to p

10: Rr: =
∑
v∈T Ev:

11: end
12: K:L ← κ(X ,L)

13: Y ← RHKT
:L

14: l← k-Means(Y , k, `1) // Lloyd k-means with the `1-distance.

6

	Introduction
	Kernel k-Means and Approximations
	Approximate Nearest Centroid Embedding
	Experiments

