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Abstract. We consider the problem of image comparison in order to
match smooth surfaces under varying illumination. In a smooth surface
nearby surface normals are highly correlated. We model such surfaces
as Gaussian processes and derive the resulting statistical characteriza-
tion of the corresponding images. Supported by this model, we treat
the difference between two images, associated with the same surface and
different lighting, as colored Gaussian noise, and use the whitening tool
from signal detection theory to construct a measure of difference between
such images. This also improves comparisons by accentuating the differ-
ences between images of different surfaces. At the same time, we prove
that no linear filter, including ours, can produce lighting insensitive im-
age comparisons. While our Gaussian assumption is a simplification, the
resulting measure functions well for both synthetic and real smooth ob-
jects. Thus we improve upon methods for matching images of smooth
objects, while providing insight into the performance of such methods.
Much prior work has focused on image comparison methods appropriate
for highly curved surfaces. We combine our method with one of these,
and demonstrate high performance on rough and smooth objects.
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1 Introduction

Comparing images is a fundamental part of computer vision systems that per-
form recognition, alignment and tracking. Many approaches have tackled the
critical problem of accounting for lighting variations [6, 11, 13, 2, 3] when making
comparisons. These methods work well on rough objects containing discontinu-
ities or places of rapid change in albedo or shape. However, comparing images of
smooth surfaces with no edges or texture under varying illumination remains a
challenging problem. This problem is important since most real surfaces contain
rough and smooth regions. Handling smooth regions is important for improved
recognition or dense registration or tracking of such objects. In this paper we
propose a new measure for image comparison of smooth surfaces, and demon-
strate its value on the problem of object identification under fixed pose but
varying lighting.

There are three things that seems to be very important in constructing a rep-
resentation for image comparison. First, finding a representation that captures
similarities between images of the same object (eg., through quasi-invariance).
Second, also capturing dissimilarity between images of different objects. Third,
choosing an optimal measure for comparing the resulting representations. Most
previous methods have focused on the first problem, by choosing representations
of images that are invariant, or quasi-invariant to lighting. Edges are a classic
example. [3] discuss the quasi-invariance to lighting changes of operators that
use derivatives. Gabor jets are also widely used for image comparison, in part
because they are also considered to be insensitive to lighting changes (eg., [13]).
[6] point out that the direction of the gradient is relatively insensitive to lighting
changes. However, it is well-known that quasi-invariance to lighting changes is
difficult to achieve for smooth objects.4 Hence we will not focus on invariant rep-
resentations, but tackle the other two problems: increasing dissimilarity between
images of different objects while constructing an optimal comparison measure.

The primary problem presented by smooth objects is that nearby albedos and
surface normals are highly correlated, which causes correlations in nearby inten-
sities in their images. Consequently, comparisons that treat neighboring pixels as
independent, such as sum-of-squared-differences (SSD) are not statistically valid.
Moreover, correlations between image pixels improve the chances that images of
two different objects will match well, since if they are similar at one point, they
are likely to be similar at many. We approach this problem by constructing a
statistical model of the dependencies between neighboring portions of smooth
shapes. We then use this to model the effect that lighting changes have on the
appearance of a smooth object. We can then design operators to decorrelate the
pixels in images of these objects.

We use whitening to lessen dependencies in the difference between two im-
ages. Signal detection theory tells us that this is the optimal approach when the

4 This is made explicit in the analysis of [6], which shows that gradient direction is
truly invariant to lighting direction for surfaces with discontinuities, and varies more
rapidly with smoother objects.
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difference between images of the same object consists of colored (non-independent)
Gaussian noise [17]. We show that for a simple model of smooth surfaces, this is
a good characterization.

Whitening has often been used for decorrelation of images in image processing
tasks such as watermarking [8, 7], image restoration [18, 4, 5], and texture feature
extraction [9, 14]. Many methods have used some differential operators or the
Laplacian [16] to approximate the whitening filter, though [14] used a 2D causal
linear prediction model to derive whitening filters.

Whitening decorrelates image intensities, but it does not make them insen-
sitive to lighting variation. In fact, we prove that no linear filter can produce
an image representation that is more insensitive to lighting variation than the
original image. One consequence of this is to prove that non-linear lighting in-
sensitive methods for rough surfaces, such as the direction of gradient, are more
lighting insensitive than any possible linear filter.

To summarize, whitening, like any linear filtering, does not make images of
the same object more similar. However, it helps to increase dissimilarity be-
tween images of different objects and allows us to use SSD as the optimal mea-
sure for comparison. These make whitening a superior comparison method for
smooth surfaces, which we confirm in our experiments on synthetic and real data.
We combine whitening with the direction of gradient to produce a comparison
method that performs very well on both smooth and rough objects.

We first presented the idea of using whitening for image comparison in our
recent workshop paper [1]. The discussion of invariance in Section 3 is completely
new, as is the motivation for using whitening described in Section 2.4 and the
combined recognition method and experiments described in Section 4.3.

2 The Whitening Approach

As mentioned above, discrimination between smooth objects is difficult due to
the high correlation between nearby pixels in their images. One consequence of
this is that pixel by pixel comparisons such as SSD are not optimal. In this
section we show how to derive linear filters that remove correlations between
neighboring pixels. These whitened images can then be optimally compared using
SSD. We take a statistical approach, regarding the difference image, Id = I1 −
I2 as a random variable (I1 and I2 denote two images of the same surface).
We analyze this considering a Lambertian surface illuminated by distant point
sources. Neglecting shadows, we can model the images as: I1 = ρN̂s1 and I2 =
ρN̂s2, where N̂ are surface normals, ρ is albedo, and s1, s2 are light sources in
two images. Then

Id = ρN̂s1 − ρN̂s2 = ρN̂(s1 − s2) (1)

Dependencies that exist between nearby surface normals of an object lead to
dependencies in Id, which we treat by modeling Id as colored Gaussian noise.
(Colored Gaussian noise captures noise with dependencies, whereas white noise is
independent.) While this model is not strictly true, it is a valuable approximation
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that opens the way to using a whitening filter, which is a standard tool in signal
detection, to reduce dependency in the difference image.

2.1 Whitening in Signal Processing

First we describe whitening. Let n represent a set of pixels in the difference
image, as a vector. Assume that n is Gaussian colored noise. This implies that
it is fully characterized by its first and second order statistics. In particular, the
whitening filter may be designed using the covariance matrix. Let C = E[nnT ] be
the covariance matrix characterizing the distribution of n (E denotes expected
value). Let W be a matrix composed of the scaled eigenvectors of C, 1√

λi
ei as

rows. Then, the components of y = Wn are independent, as implied from their
Gaussianity and their covariance:

E[yyT ] = diag(λ1, λ2, . . . λm)

That is, the multiplication by the matrix W“whitens” the vector n.

2.2 A Model for Natural Images - Rough Plane Covariance

To whiten a surface’s images, we must understand their covariance structure.
Consider a surface characterized by normal vectors that make small random
perturbations about a common direction (without loss of generality the z axis).
We refer to such a surface as roughly planar and assume that locally a smooth
surface behaves like a roughly planar surface. This is a generalization of the
common facet model [10]. Considering the simplified, 1D, variant, the “surface”
is described by a function z = f(x). The normals at every point x are random
(but not independent!) and each of them is specified by a single parameter θ,
which is its angle relative to the z axis (Figure 1). Quantitatively we characterize
the function θ(x) as a wide sense (w.s.) stationary Gaussian random process [15].
That is, we assume that the expected value at every point is constant µθ = 0,
that the variance Cθ(x, x) = σ2

θ is constant as well, and that the auto-correlation
Cθ(x1, x2) = r(x1, x2)σ2

θ = r(|x1− x2|)σ2
θ depends only on the distance between

two points. r(|x1 − x2|) is a correlation coefficient. We also assume that the
surface is Lambertian, and that its albedo ρ, is constant, at least locally.
Proposition 1: Under the above assumptions and for a distant light source,
illuminating the surface at angle φ (relative to the z axis), the reflected light
function I(x) is a random w.s. stationary process. Its expected value, variance
and auto-correlation are:

E[I(x)] = ρcosφe−σ2
θ/2

σ2
I =

1
2
ρ2(sin2φ(1− e−2σ2

θ ) + cos2φ(1− e−σ2
θ )2) (2)

CI(x1, x2) =
1
2
ρ2(sin2φe−σ2

θ (erσ2
θ − e−rσ2

θ ) + cos2φ(e−σ2
θ (erσ2

θ + e−rσ2
θ )− 2e−σ2

θ ))

where x1, x2 are the two points for which the correlation coefficient of the tangent
direction is r = r(|x1 − x2|).
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Fig. 1. The roughly planar (random) surface is specified (in 2D approximation) by the
angle θ(x) that the normal makes with the z direction.

Proof. (For details see [1]) The reflected light function I(x) is a random process.
Let x1, x2 be two points for which the correlation coefficient of the tangent
direction is r = r(‖x1, x2‖). Then, their autocorrelation is

CI(x1, x2) = E[(I(x1)− E[I(x)])(I(x2)− E[I(x)])]
= ρ2E[(sinφsinθ1 + cosφcosθ1 − cosφE[cosθ1]) ·

(sinφsinθ2 + cosφcosθ2 − cosφE[cosθ2])]
= ρ2(sin2φE[sinθ1sinθ2] + cos2φE[cosθ1cosθ2]− cos2φE[cosθ]2

=
1
2
ρ2(sin2φe−σ2

θ (erσ2
θ − e−rσ2

θ ) + cos2φ(e−σ2
θ (erσ2

θ + e−rσ2
θ )− 2e−σ2

θ ))

Note that all sinθicosθj terms vanish due to symmetry. The rest of the derivation
requires us to change variables, to the sum and difference of θ1 and θ2, which
are independent. Simple trigonometric expressions and the Gaussian integral∫
∞ cosx e−x2/2a2

dx =
√

2π|a|e−a2/2 are used as well.

For rougher surfaces (larger σ2
θ) correlation decreases while for the (impossi-

ble) white surface (independent normals, r = 0), the image is white as well.
The covariance in eq. 2 is non-stationary and it varies with φ. It can be shown

however, that of the two additive terms in the covariance expression the first is
dominant, provided the surface is smooth (σθ is small) and that the illumination
angle φ is not very small. This readily implies that:

Covariance characterization for rough Lambertian plane: the second or-
der statistical behavior of a rough Lambertian, planar surface, illuminated by a
single source, is characterized by an autocorrelation function which, for nearly
every illumination, is approximately invariant of the illumination direction up
to a multiplicative factor.

See [1] for experimental validation of this result for real objects.

2.3 Whitening using AR models

Designing a whitening filter by estimating the covariance is problematic as the
covariance (and the mean) are nonstationary. Fortunately, fitting a parametric
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Autoregressive (AR) model, allows us to get the whitening filter directly without
explicitly estimating covariance [12].

A sequence x(n) is called an AR process of order p if it can be generated as
the output of the recursive causal linear system

x(n) =
p∑

k=1

a(k)x(n− k) + ε(n),∀n (3)

where ε(n) is white noise, and the sum x̄(n) =
∑p

k=1 a(k)x(n − k), is the best
linear mean squared (MS) predictor of x(n) based on the previous p samples.
Given a random sequence (with possible dependencies), an AR model can be
fitted using SVD to estimate the overdetermined parameters a(k) which mini-
mize the empirical MS prediction error

∑
n(x(n)− x̄(n))2. For Gaussian signals

the prediction error sequence: ε(n) = x(n) − x̄(n) is white, implying that the
filter W = (1,−a1, . . . ,−ap) is a whitening filter for x(n). We have adopted a 2D
“causal” model described in [12], where a gray level x(n) is predicted from the
previous gray levels in a p× p neighborhood in column by column scan. Using a
non-causal neighborhood leads to a lower SSD, but the prediction error sequence
is not white [12].

Note that scaling all the grey levels by the same factor would give a correla-
tion function which is the same up to a multiplicative constant. This is essentially
what happens when the angle between the average normal and the illumination
direction changes. Fortunately, this does not change either the AR coefficients,
or the resulting whitening filter, implying that it can be space invariant.

The whitening filter depends on the image statistics. Intuitively, for smoother
images the correlation is larger and decorrelating it requires a wider filter. For
images which are not so smooth the decorrelation is done over a small range, and
the filter looks very much like the Laplacian, which is also known to have some
whitening effect. Therefore, for rougher images, we do not expect to perform
better than an alternative procedure using the Laplacian. As we shall see later,
for smooth objects the performance difference is significant.

2.4 Whitening Images from Different Objects

Signal detection theory tells us that whitening is useful for image comparison
because whitened images from the same object can be optimally compared using
SSD. Whitening has another advantage, it makes images from different objects
more distinctive.

To see this, let S denote a 3D surface. We will take two pictures of S in a
fixed pose with two different point sources of light, s1 and s2. s1, s2 are each 3×1
vectors that encode lighting direction and magnitude. pi,j denotes a patch of the
surface corresponding to an image pixel. We approximate pi,j as a planar patch,
with surface normal N̂i,j , and albedo ρi,j . It will be convenient to denote the
scaled surface normal ρi,jN̂i,j by Ni,j . We denote the image pixels corresponding
to pi,j by I1,i,j , I2,i,j in the two images. So we may write, for example, I1,i,j =
NT

i,js1, since we ignore the effects of shadows.
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Let L denote a whitening filter, represented discretely as a matrix with ele-
ments Lk,l. Without loss of generality we suppose L is square and −n ≤ k, l ≤ n.
If we apply this filter to the image I1 we denote the output as I1. So:

I1,i,j =
n∑

k=−n

n∑

l=−n

Lk,lI1,i+k,j+l

We can define a new surface, S, such that its scaled surface normals are:

Ni,j =
n∑

k=−n

n∑

l=−n

Lk,lNi+k,j+l

Intuitively, S can be thought of as the surface filtered by L. According to our
model, while the original normals are highly correlated, the whitened normals
will be white noise, with randomized directions and scales. As high-dimensional,
white noise, different whitened surfaces will also be uncorrelated with each other,
with high probability. This is analogous to taking a smooth, white surface and
splattering it with gray paint. Smooth surfaces are easily confused with each
other, while highly textured ones are not. Of course, whitening does not add
differences to signals, it makes explicit the differences that are already there.

More formally, communication theory tells us that discriminating between
correlated models is difficult. Specifically, for two unit energy signals z1(x), zj(x),
the correlation coefficients is ρij =

∫
zi(x)zj(x)dx. For best performance, the

correlation coefficient between any pair of models should be as low as possible.
For two signals the lowest correlation is −1, and choosing z2(x) = −z1(x) is
optimal. When the number of signals is large, such correlations between all
signal are not possible, and the best we can get is ρ ≈ 0 [17].

Whitening treats the signals and the noise equally and therefore leaves the
signal to noise ratio (SNR) the same. However the whitened signals become
uncorrelated and therefore with the same SNR we get better performance. The
correlation between the original images associated with different objects is high
initially and is almost zero afterwards, so the improvement is significant.

3 Invariance and Linear Filtering

While most prior work has focused on finding lighting insensitive image compar-
isons, we have not argued that whitening is lighting insensitive. We now prove
a result that casts doubt on the ability of any linear filter to produce lighting
insensitive representations.

Theorem 1. Suppose that the lighting directions s1 and s2 are drawn from a
uniform distribution, and that we neglect the effects of shadows in images. Then
I1,i,j/I2,i,j and I1,i,j/I2,i,j are identically distributed. That is, the distribution
of the ratio of intensities between one image of an object and another are un-
affected by filtering with an arbitrary linear filter. In this sense, no linear filter
can produce a lighting insensitive representation.
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Proof. This follows immediately once we consider that linearly filtering the im-
ages is equivalent to filtering the surface, as described above. Let N denote the
filtered normals, as above, but now for an arbitrary linear filter. Let N̂i,j denote
a unit vector in the direction of Ni,j .

I1,i,j

I2,i,j
=

N̂i,js
T
1

N̂i,jsT
2

I1,i,j

I2,i,j
=
N̂i,js

T
1

N̂i,jsT
2

Since s1 and s2 are uniformly distributed it is clear from symmetry that these
two fractions are identically distributed, because N̂ and N̂ are identical up to a
rotation. In sum, we have created a filtered surface that is affected by lighting
changes exactly as the original surface.

It is possible to extend this result to handle the case of attached shadows by
restricting the distribution of light sources to appear in a hemisphere above the
surface normal. However we omit details of this for lack of space.

Our result may seem to contradict the well known fact that derivative oper-
ators are invariant to constant changes in illumination, but this is not so. The
effect of constant illumination on a surface patch is equivalent to that of a point
source in the direction of N̂ , since this is the average of all the illumination that
strikes the surface. Consequently, the unfiltered surface normal is sensitive to
constant illumination, since it points in this direction, while the derivative of
the surface normal is insensitive to constant lighting, since it is orthogonal to
N̂ . The unfiltered and filtered surfaces are equally sensitive to lighting changes
from random directions, but the unfiltered surface is most sensitive to lighting
changes from above. However, while lighting itself contains significant constant
(DC) components, it is not clear that lighting changes tend to have large constant
components.

Our results suggest that we should not seek lighting insensitive representa-
tions with linear filters, although as we have shown, linear filters that decorrelate
images can improve image comparison. Another possible response to this result
is to seek lighting insensitivity in non-linear operations, such as edge detection.
In fact, one implication of our result is that the direction of the gradient is more
insensitive to lighting than any possible linear operator, since [6] shows that the
direction of the gradient is less sensitive to lighting than the image itself.

4 Experiments

We tested our ideas by applying them to object recognition. A set of objects is
represented in a library containing one image for every object. Let IM1 , IM2 , . . .
be reference images in the library. Let IQ be the query image of one of the objects
from this set, taken with the same pose, but different illumination. The task is
to decide which of the objects is the one in the query image.

Since the reference image IMj was taken with a different illumination in-
tensity than the test image, every scaled version of it is a valid model as well.
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Fig. 2. The top and the center images in the left column correspond to different surfaces
and one illumination. The bottom image is created from the same scene used for the
top image, but with a different illumination. The center column shows the whitened
images and illustrates that whitening reveals hidden differences. The plot on the right
shows recognition performance of the tested methods on the synthetic images. The
success rate is plotted against the average angle between the illumination source and
the average surface normal.

Minimizing the SSD over all scaled versions is equivalent to taking the SSD be-
tween the normalized whitened images. This normalization also compensates for
the fact that some objects are rougher than others, which makes the difference
between two differently illuminated images of them larger.

Therefore we perform the following steps: 1) For every reference image, IMj ,
use the whitening operator W , to calculate the normalized L2 norm Ej =

‖ W (IMj
)

‖W (IMj
)‖−

W (IQ)
‖W (IQ)‖‖. 2) Choose the model associated with the smallest whitened

error norm, Ej .
We tested the whitening approach on smooth textureless surfaces. We also

integrated whitening with a comparison method designed for rough surfaces, and
showed that this combined method could work on rough and smooth surfaces.

4.1 Synthetic images

The first set of experiments was done using synthetic images. Every scene was
created as a sum of random harmonic functions, with fixed amplitudes but ran-
dom directions and phases. This provides an ensemble of images with similar
statistical properties. These were rendered as Lambertian surfaces with point
sources.

We trained a whitening filter using 1000-5000 images with a fixed illumi-
nation, deviating 67.5 degrees from the z direction. The training set was inde-
pendent of the test set. A test was done as follows: two random scenes were
illuminated by the same nearly vertical illumination to create two references
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Fig. 3. Samples from the smooth real objects data set; top – frontal illumination,
bottom – side illumination.

images Ir, I
′
r. The test image It was synthesized from the first scene, with a

different illumination, making an angle φ with the z axis (see Figure 2).
For comparison we also tested other algorithms using the SSD of the gray

level image, a Laplacian filtered image, and the direction of the gradient5. See
Figure 2 for the results.
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Fig. 4. Recognition performance of the tested methods on real smooth objects on the
left and rough objects (Yale database) on the right. The success rate is plotted against
the average angle (in degrees) between the illumination source and the average surface
normal.

We came to several conclusions. First, whitening was the most successful
method. Second, whitening worked best with a large filter, but it also worked
substantially better than other methods even with a 7 × 7 filter, except for
extreme illumination angles. In particular whitening was always better than the
Laplacian, even when a 3× 3 filter was used, implying that both large distance
correlations and causality are important.
5 We did not test Gabor Jets on the synthetic images, but later experiments show

they are not especially effective on smooth surfaces.
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4.2 Real Smooth Objects

Next, we describe experiments with real, smooth objects that produce images
with substantial shadows (Figure 3). We created eighteen objects from clay and
illuminated them by a single light source moving along a half circle, so that its
distance from the object was roughly fixed. We used a camera placed vertically
above the object, and took 14 images of every object with different lighting
directions at angles in the range [−70, 70] degrees to the vertical axis. One image
of each object, associated with a nearly vertical illumination, were chosen as the
reference images.

The whitening filter was trained on the difference images between reference
images and corresponding images associated with the same object and six other
illuminations. Only twelve images associated with 2 objects (out of 18) were
used. We learned the whitening filter, as a 2D causal filter with 25 coefficients
inside 7 × 7 windows. All images of the 18 objects except the reference images
were used as query images (234 images). We divided the query images into four
groups according to their angular lighting direction:10o−25o, 26o−40o, 41o−55o,
and 56o − 70o.

The plot in Figure 4 shows our results. Whitening again performed better
than the other methods. We also observed that for a few of the roughest ob-
jects, the Laplacian, whitening and gradient angle performed equally well. For
smoother objects, however, whitening worked considerably better. The Lapla-
cian couldn’t whiten the smooth surfaces, because its size was insufficient to
handle the high correlations between the grey levels of the smooth surfaces.

4.3 The Combined Method

To handle objects that may be rough or smooth, we propose that whitening be
combined with a measure that is geared towards handling rough objects, such
as the direction of gradient. We have done a proof-of-concept implementation
of a simple combined method. Direction of gradient is naturally normalized to
the [0, π] range. Whitening, however, requires normalization prior to combining.
Let s1, s2, ..., sn denote the distances between the query image and n reference
images after whitening. We normalize them to the [0, 1] range by dividing all the
distances by max |si|. Different areas in the image can have different roughness
levels. We compensate for this effect by choosing the normalization factor adap-
tively in 10×10 pixel areas instead of the whole image. Our experiments showed
that adaptive normalization yields better results. We have also scaled the direc-
tion of gradient output to the [0, 1] range. We have tested the combined method
on both smooth (Figure 4 left) and rough data (Figure 4 right) sets. As a smooth
set we took the clay objects described in the previous section. As a rough set
we took the Yale database [6], which contains 20 objects with abrupt changes
in albedo and shape. The database consists of 63 images of each object with
lighting direction deviating up to 90 degrees from the frontal. Our experiments
showed that the combination of whitening and direction of gradient (CWD) was
better than either whitening or direction of gradient alone on both data sets;
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and CWD had the best (and perfect) performance on the smooth set. On the
rough data the combined method performed very well, but not as well as Gabor
Jets. In future work we plan to continue this approach and try to find a more
clever combining technique that will integrate whitening with some variation of
Gabor Jets. We also tested a combination of Laplacian and direction of gradient.
This combination performed less well than CWD on smooth data and similar to
CWD on the rough data. The Laplacian has some whitening effect, which ex-
plains its good performance on smooth data. On the other hand, decorrelation
in the rough objects occurs over a small range, and the whitening filter looks
very much like the Laplacian explaining the results on the rough set.

5 Conclusions

In this work we have proposed a measure for image comparison of smooth sur-
faces under varying illumination. The measure was motivated by a simple sta-
tistical model of smooth surfaces. This model showed that the error between
two images associated with the same object under different lighting may be
modelled as colored noise. We adapted well-known techniques of whitening to
perform matching of images corrupted by such noise.

We found that whitening was more effective than other representations for
comparing images of smooth surfaces taken under varying illumination condi-
tions. Previous methods have commonly used the Laplacian or the magnitude
of gradient, as whitening approximations. This seems to be adequate for rough
images but leads to inferior results for smoother ones.

We believe that recognition (or image comparison in general) should use all
the image information. Many current methods neglect photometric information
and thus cannot handle smooth objects. Our preliminary results showed that
a proper combining method, using both the information in edges and the in
smooth patches, would yield superior results, especially in hard tasks.

References

1.

2. P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisherfaces:
Recognition using class-specific linear projection. PAMI, 19(7):711–720, July 1997.

3. R. Brunelli and T. Pggio. Face recognition: Features versus templates. PAMI,
15(10):1042–1062, 1993.

4. B. Bundschuh. A linear predictor as a regularization function in adaptive image
restoration and reconstruction. In 5th Int, Conf. on Computer Analysis of Images
and Patterns, 1993.

5. H. Bundschuh, B. Schulz and D. Schneider. Adaptive least squares image restora-
tion using whitening filters of short length. In Second HST Image Restoration
Workshop, 1993.

6. H.F. Chen, P.N. Belhumeur, and D.W. Jacobs. In search of illumination invariants.
In CVPR00, pages I: 254–261, 2000.



13

7. M. L. Cox, I. J. Miller and Bloom J. A. Digital Watermarking. Morgan Kaufmann,
2002.

8. T. Depovere, G. Kalker and J.P. Linnartz. Improved watermark detection using
filtering before correlation. In IEEE Int. Conf. on Image Processing, pages I: 430–
434, 1998.

9. O.D. Faugeras and W.K. Pratt. Decorrelation methods of texture feature extrac-
tion. PAMI, 2(4):323–332, July 1980.

10. R.M. Haralick and L.G. Shapiro. Computer and robot vision. In Addison-Wesley,
1992.

11. D.W. Jacobs, P.N. Belhumeur, and R. Basri. Comparing images under variable
illumination. In CVPR98, pages 610–617, 1998.

12. A.K. Jain. Fundamentals of digital image processing. In Prentice Hall, 1989.
13. M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P.

Wurtz, and W. Konen. Distortion invariant object recognition in the dynamic link
architecture. TC, 42(3):300–311, March 1993.

14. Z. Lin and Y. Attikiouzel. Two-dimensional linear prediction model-based decor-
relation method. PAMI, 11(6):661–665, June 1989.

15. A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw
Hill, 3rd edition, 1991.

16. W.K. Pratt. Digital Image Processing (First Edition). Wiley, 1978.
17. H.L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. Wiley,

New-York, 1965.
18. L.P. Yaroslavsky. Digital Picture Processing. An Introduction. Springer Ver-

lag,Berlin, Heidelberg, 1985.


