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Abstract

Several vision problems can be reduced to the problem of fitting a linear surface of
low dimension to data. These include determining affine structure from motion or from
intensity images. These methods must deal with missing data; for example in structure
from motion, missing data will occur if some point features are not visible in the image
throughout the motion sequence. Once data is missing, linear fitting becomes a nonlinear
optimization problem. Techniques such as gradient descent require a good initial estimate
of the solution to ensure convergence to the correct answer. We propose a novel method
for fitting a low rank matrix to a matrix with missing elements. This method produces
a good starting point for descent type algorithms, and can produce an accurate solution
without further refinement. We then focus on applying this method to the problem of
structure-from-motion. We show that our method has desirable theoretical properties
compared to previously proposed methods, because it can find solutions when there is
less data present. We also show experimentally that our method provides good results
compared to previously proposed methods.
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1 Introduction

Recently, several important vision problems have been addressed by using affine imaging

models, which reduce the problems to ones of finding a low-dimensional linear surface that

represents some important scene structure. For example, in the linear combinations work

of Basri and Ullman[21, 2], the set of images produced by any 3-D structure from different

viewpoints is represented as a low-dimensional surface in the space of all possible images.

This structure is then used for object recognition. Tomasi and Kanade[20] use a related

insight to efficiently perform structure-from-motion in long motion sequences. Since the

noise-free images should all lie in a low-dimensional linear surface, such a surface can be

fit to the data and then used to derive structure and motion. Moses[12] and Shashua[16]

show that the set of intensity images produced by a 3-D Lambertian structure from

a single viewpoint but with a point light source of varying position and intensity can

also be described as a 3-D linear surface in a space of possible images. Belhumeur and

Kriegman[3] use this result to describe the set of intensity images produced by a convex

object, allowing for multiple light sources and self-shadowing. In all of this work, the

problem is greatly simplified by finding a reasonable set of assumptions to make it linear.

All of these methods require fitting a matrix of low rank, r, to a data set. The

linear space spanned by this matrix corresponds to scene structure. This can be done

by acquiring only the minimal amount of data needed to construct a r × n matrix ([21,

12, 16, 3]), which has exactly rank r even in the presence of noise. This method is

simple, but can be quite sensitive to noise. Ullman and Basri also propose using singular

value decomposition (SVD) to fit a low rank matrix to a larger matrix built when extra

images are used to overdetermine the problem. Tomasi and Kanade use a long motion

sequence to build a large matrix, and then find the nearest low rank matrix using SVD.

Hayakawa[7] applies SVD to find the linear surface produced by varying illumination.

SVD finds the low rank matrix that minimizes the sum of square differences between

each element in the new matrix and the data matrix, reducing the effects of noise.

A significant limitation of these methods is that they require a data matrix with

no missing elements. In the case of structure-from-motion this means that every point

feature must be visible in every image. This is a strong assumption, because often points

enter or leave the field of view during a motion sequence, or may be blocked from view

by other objects in the middle of a sequence. While this problem can be addressed

by working only with subsets of the points and frames that together have no missing

elements, this is undesirable for two reasons. First, one will obtain suboptimal solutions
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that do not take account of all available data. Unless large subsets of points are mutually

visible over large camera motions, results can be unstable. Second, the resulting solutions

will not have a common reference frame.

The methods that describe the intensity manifold produced by a scene use a set of

images in which illumination in each image comes from a single point light source. The

data matrix will have missing elements when scene points are not illuminated by the light

source; therefore these methods require that every visible scene point be illuminated in

every image. However, for scenes with smooth objects, this assumption will be met only

when the light source direction is the same as the viewing direction, ie. for one possible

image. More generally, most visible points will be illuminated only when the light source

is near the viewing direction. However, if images are generated with similar light source

directions, the resulting solution may be unstable.

Tomasi and Kanade recognized that more reliable and general solutions can be ob-

tained by fitting a low rank matrix to a data matrix that has some missing elements, and

provided a method of doing this. We describe this method in Section 2, and compare it

to our own in Section 4. Shum, Ikeuchi and Reddy[17] apply an iterative method due to

Wiberg[22] to a related structure from motion problem. This method minimizes the sum

of square differences between the fitted, low rank matrix and the elements that are not

missing in the data matrix. This approach has the virtue of converging to a locally opti-

mal solution, however it is not guaranteed to find the globally optimal one. We describe

this method in Section 2, and later describe experiments in which we apply their method

to our problems. Other authors (eg., Hartley[6] McLauchlan et al.[11], and Soatto and

Perona[18]) have also applied iterative error minimization methods to the problem of

determining structure-from-motion. We show, as others have also noted (eg., Hartley[6])

that these methods can often converge to the wrong answer if they do not have a good

starting point.

We present a novel method of fitting a low rank matrix to a matrix with missing

elements. Our method works by combining constraints on the solution derived from small

submatrices of the full matrix. Specifically, we show that for every r-tuple of columns

in the original matrix, the space spanned by all possible completions of these columns

must contain the column space of the completely filled matrix. Solutions satisfying these

partial constraints can be found using standard techniques of linear algebra, which take

account of the effects of noise.

We then show how this algorithm can be applied to determining structure-from-

motion. This requires modifications to account for object translation, and allows us to
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take advantage of the particular pattern of missing data that occurs in such problems.

We also point out the potential of our basic algorithm for handling intensity image

description problems. We describe experiments to evaluate the accuracy of our method,

and compare it to previously proposed methods, both theoretically and experimentally.

Our method has a heuristic approach to handling noise, and does not produce an

optimal solution. Therefore, it is most suitable as a way of providing a starting point for

iterative methods. We will experimentally show its value as a starting point, and also,

in some cases, as a quick and dirty solution.

2 Background

In this section we first show in more technical detail how the vision problems we consider

have been posed as linear surface fitting problems. We then review previous methods

for handling missing data. After presenting our own algorithm, we will compare it to

previous approaches in Section 4.

2.1 Linear Fitting

The methods proposed by Ullman and Basri and Tomasi and Kanade assume that a

sequence of matched image points is given, and that these were projected from 3-D to

2-D using a camera model that is affine, or a subset of affine (eg. orthographic, weak

perspective, or paraperspective [13, 19, 1]). The translation component of motion is esti-

mated separately, by estimating the translation of the center of mass of the points. This

method is no longer suitable when there is missing data. To simplify our presentation,

we will first consider the case in which there is no translation. In Section 3.4 we will then

show how to handle translational components of motion.

Let pi = (xi, yi, zi)
T be the i’th 3-D point feature. Then we may write the transfor-

mation mapping the model to image j as a 2 × 3 matrix, Sj. Letting qi,j = (ui,j, vi,j)

stand for the image point produced by pi, this gives:

(
ui,j

vi,j

)
=

(
Sj1,1 Sj1,2 Sj1,3

Sj2,1 Sj2,2 Sj2,3

) 


xi

yi

zi




For the case of scaled-orthographic projection, Sj is the first two rows of a scaled rotation

matrix.
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We can now represent an entire image sequence in simple matrix notation. Let P be

a matrix whose i’th column is pi:

P ≡



x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn




Let S stand for a matrix containing all rows of all transformations Sj, that is, row 2i− 1

of S is the first row of Si, and row 2i of S is its second row.

S ≡




S1

S2

.

.

.
Sm

2




Finally, let Q̂ stand for a single matrix containing all tracked image points. Each column

of Q̂ contains all the image coordinates of a single point. That is, Q̂(2i−1),j gives the u

coordinate of pi in image j, and Q̂(2i),j gives its v coordinate.

Q̂ ≡




û1,1 û1,2 . . . û1,n

v̂1,1 v̂1,2 . . . v̂1,n

û2,1 û2,2 . . . û2,n

v̂2,1 v̂2,2 . . . v̂2,n

. . . . . .

. . . . . .

. . . . . .
ûm

2
,1 ûm

2
,2 . . . ûm

2
,n

v̂m
2

,1 v̂m
2

,2 . . . v̂m
2

,n




where (ûi,j, v̂i,j) are the noisy (ui,j, vi,j) coordinates. Let E be a matrix of the same dimen-

sion as Q̂, whose elements indicate the noise encountered in sensing the corresponding

elements of Q̂. Then we may simply describe the generation of the whole image sequence

as:

SP + E = Q̂

We further define:

Q ≡ Q̂− E = SP

Although we have no direct access to the error-free data, Q, we wish to estimate it from

Q̂. Because S has three columns, it can only have rank three, and consequently Q can

5



have only rank three.1

The matrix containing the coordinates of sensed image points, Q̂, will be a noisy

version of Q, and will have full rank. However, if we find the Q matrix of rank three

that is closest to Q̂, we can obtain a maximum likelihood estimate of Q when the error is

Gaussian. In particular, we can use SVD to find the Q matrix that minimizes
∑

i

∑
j(Q̂ij−

Qij)
2. We can also use SVD to factor this Q matrix into S and P, providing us with

estimates of the structure and motion of the 3-D points, up to an affine transformation.

See Tomasi and Kanade for further details.

When some points are not visible in some images, Q̂ will contain missing entries for

these points. We still know that the error free data, were it all visible, would give rise

to a Q matrix of rank 3. We can therefore find the affine structure and motion that

minimizes error by finding the Q matrix that is closest to Q̂ where we now compare only

those elements actually present in Q̂ to the corresponding elements of Q. The problem

of finding structure from motion in the presence of missing data then, depends on finding

the nearest rank three matrix to a data matrix with missing elements.

A similar formulation has been used by Shashua, Moses, Hayakawa, and Belhumeur

and Kriegman to describe the set of intensity images produced by a 3-D Lambertian

structure exposed to a point light source at infinity. Let the direction of the source in

image j, scaled by its intensity be the 3-D vector: −hj. In this case, let qi,j be the

intensity of image pixel i in image j. Finally, assume that this intensity is produced by a

3-D planar patch of the scene with a surface normal ni and albedo ρi. Then, intensities

are produced according to the equation:

qi,j = hj · ρini

provided that this produces a positive value (ie. each surface normal is facing the light

source). Since we can never recover the absolute magnitude of hj or ρi from a set of these

equations, we may without loss of generality assume that ρini is simply an unconstrained

3-D vector (that is, the constraint that albedo is less than one has no effect without some

limitation on the scale of hj). Next, assume we take a set of images in which the viewpoint

is fixed, but the lighting intensity and direction may vary. Let N be a scene matrix in

which the j’th column is ρini. Let H be a lighting matrix in which the j’th row is hj.

And let Q̂ be a data matrix of the qi,j. Then we have:

Q̂ = HN + E

1That is, the columns (or rows) of Q, regarded as points, must occupy no more than a 3-D linear
subspace of Rm (Rn). Any column (or row) will be a linear combination of any other three linearly
independent columns (or rows).
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Q ≡ Q̂− E = HN

where E is again a matrix of sensing errors. Again Q has rank three. Again, our noisy

images provide a full rank matrix Q̂, and again, we can estimate Q,H and N from Q̂

by using SVD to find the nearest rank three matrix to Q̂, along with its decomposition.

Shashua uses the matrix N to determine whether a novel image could be generated by

the same scene, by determining whether the novel image is a linear combination of the

rows of N.

For this problem, Q̂ will have missing elements when we can detect that pixel values

do not arise from the formula qi,j = hj ·ρini. This occurs when some of the scene surface

normals do not face the light source. For if hi ·ρjnj < 0, the scene point is self-shadowed,

producing zero intensity plus noise, not negative intensity, where “noise” includes effects

not accounted for in this lighting model, such as interreflections. If a pixel value appears

darker than some threshold, we can infer that it may be self-shadowed, and delete it from

the matrix. Similarly, if we can detect that some pixel values are due to specularities

because they saturate the sensor, we may remove them from the data matrix. As we will

see, we can use extra images to fill in this missing data, so it will be safe to be aggressive

in deleting questionable intensity values. Belhumeur and Kriegman use N to determine

the illumination cone that describes the set of images that a scene can produce, allowing

for self-shadowing, but they still build N using images in which there is no self-shadowing.

2.2 Missing data

The problem of finding a good approximation to a matrix with missing elements appears

to be much harder than that of approximating a noisy, but complete matrix. To see this,

consider the case in which there is no sensing error. With no missing data, this is readily

solved using SVD. With missing data, this becomes a problem of determining how to fill

in missing elements while keeping the matrix at rank r. The filled in matrix will have

rank r if and only if every (r + 1) × (r + 1) submatrix has determinant zero. If one

treats missing elements as unknowns, these determinants give rise to a series of nonlinear

equations. Thus, it appears that our problem has become an optimization problem with

nonlinear constraints.

The problem of filling in missing matrix elements, or otherwise perturbing a matrix

so that it will have a specified rank has received considerable attention in mathematics,

inspired in part by problems that arise in control. Solutions have been found for special-

ized versions of the problem, for example, when the missing elements form a rectangular
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block of the matrix ([4]). However, solutions do not exist for the general problem of fit-

ting a low rank matrix to a matrix with missing elements, even in the absence of sensing

error, and closely related problems are known to be NP-hard (eg., [14]).

Related problems have also been studied in statistics. While many of the methods

developed are specialized for regression analysis, two methods are related to techniques

that have been used in computer vision. In Regression imputation, linear fits to the

data that are present are used to predict the values of missing entries. In Model-based

techniques, iterative methods such as EM are used to find maximum likelihood estimates

for unknown values, given some model of their properties. A taxonomy of these methods

and a detailed discussion can be found in Little and Rubin[10].

Several methods have been suggested for computing structure-from-motion with miss-

ing data. Solutions can generally be divided into two parts: methods for obtaining an

initial estimate of structure and/or motion (initialization methods); and methods for

refining this estimate. Methods of refining an initial estimate can be further divided

into batch and filtering methods. In batch methods all the data is assumed to be avail-

able, and an iterative method is used that progressively reduces error and converges to

a solution that locally minimizes the sum of squares distance between the data and the

inferred solution. Newton’s method and related gradient descent algorithms are examples

of such batch methods. We will refer to these methods generally as iterative.2 In filtering

methods, a solution is computed using initial frames of the motion sequence, and then

this solution is updated as each new frame is acquired. We view our own algorithm as

a method for providing an initialization method that can serve as the starting point for

an iterative algorithm. We therefore especially consider previous initialization methods

and evidence that indicates when initialization is important.

Tomasi and Kanade propose one initialization method, which they then refine us-

ing gradient descent. Their algorithm is related to regression imputation techniques in

statistics. In their method, one first locates a rectangular subset of the matrix with no

missing data. Next one applies their algorithm to the problem with no missing data.

Then the missing elements of an additional column (or row) are filled in by finding the

linear combination of a basis for the columns (or rows) of the submatrix that best fits

the non-missing elements of the new column (or row).

This solution seems like a reasonable heuristic because missing data is filled in using

overconstraining information, and Tomasi and Kanade demonstrate it working effectively

2This is a bit imprecise, because initialization methods may use SVD. However, though SVD may be
computed with an iterative algorithm, it is an algorithm guaranteed to converge quickly to the globally
optimal solution, and so differs in important ways from the algorithms we call iterative.
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on two motion sequences. However, the proposed method has several potential disadvan-

tages. First, the problem of finding the largest full submatrix of a matrix with missing

elements is NP-hard (max-clique can be easily reduced to this problem) so heuristics

must be used to find a starting point. Second, the data is not used symmetrically. A

small subset of the data may be used to compute the first missing elements, which may

lead to significant inaccuracies in these elements. It is not clear how these inaccuracies

will propagate in the computation of additional missing elements. Third, for an m × n

matrix, the method requires O(max(m,n)) applications of SVD . While two experiments

on real data are shown, it is not clear how effective a starting point the method will pro-

vide in general. In Section 4 we will compare the theoretical properties and experimental

performance of this algorithm to those of our own.

McLauchlan, Reid and Murray present a filtering method for determining affine struc-

ture and motion. They initialize their method by applying Tomasi and Kanade’s algo-

rithm to the first few frames of the motion sequence, using only points present in all

these first frames. Their filtering method is suitable for the case when there is missing

data. However, they show experiments only for the case in which there is no missing

data. In this case, they show that their initial estimate is sufficient to allow the method

to converge to the correct solution. The contribution of McLauchlan et al. is to show

that a filtering method can more efficiently produce results essentially as accurate as the

optimal solution produced by the Tomasi and Kanade algorithm.

However, it should be noted that when no missing data is present, the problem of

determining structure and motion is an optimization problem with a unique local min-

imum that is the globally optimal solution. When there is missing data, the problem

begins to have many locally optimal solutions that are not globally optimal. Therefore,

McLauchlan et al’s experimental validation that their algorithm converges to the right

solution when there is no missing data is only weak evidence that the algorithm will also

work well in the presence of significant amounts of missing data.

Soatto and Perona[18] describe an interesting filtering method for determining motion

assuming scaled-orthographic projection. Their focus is on deriving filters in which the

state space to be estimated is small. Their method is also geared to handle missing

data, since only motion estimates, not structure estimates, are fused. They also present

experiments in which there is no missing data, and do not consider in detail the question

of when their algorithm will converge to a correct solution in the presence of missing

data.

Hartley[6] presents a method for finding projective structure and motion from multiple
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frames using the Levenberg-Marquardt algorithm, a variation on Newton’s method of

gradient descent. This is a batch algorithm. Hartley initializes this algorithm using

the results of a two-frame linear algorithm for projective structure and motion. While

Hartley does not apply this algorithm to the case of missing data, it is clear that the

gradient descent method can be applied readily in the case of missing data, simply by

omitting error terms involving missing elements. However, it is not clear how the results

of the two frame algorithm can be combined to initialize the algorithm, when there is

missing data. In some sense, our algorithm is a solution to this problem for the affine

case. Hartley also stresses the importance of having a good initial estimate, to ensure

convergence to a correct solution.

Shum, Ikeuchi, and Reddy[17] have also done recent work relevant to the missing

data problem. They consider the problem of deriving structure and motion based on 3-D

data whose significance can be weighted, leading to a weighted least squares problem of

fitting a low rank matrix to a data matrix. For this problem they suggest the use of an

iterative method due to Wiberg[22]. This iterative method clearly can also be applied to

the missing data problem considered in this paper. This method is described in detail

in [17]. We can briefly describe the method as formulating the least squares problem as

a bilinear optimization, and then iteratively holding one set of variables constant while

the others are optimized, so that each optimization is linear. We use their method in our

experiments, because it has good convergence properties and is easy to implement. For

the problem they consider, Shum et al. state that a random starting point is sufficient to

produce a good final solution. However, their experiments on this point cannot be used

to draw conclusions for the problem of determining 3-D structure from a sequence of 2-D

images.

Finally, Kahl and Heyden[9] present a method of handling missing data related to

our earlier version of this work (Jacobs [8]). We discuss this relationship further after

presenting our algorithm.

3 A Novel Algorithm

We now describe a new algorithm for fitting a low rank matrix to a matrix with missing

data. In the absence of sensing error this algorithm will produce a correct answer, or

report that it does not have enough constraint available to solve the problem. However,

when sensing error is present, the algorithm will not necessarily produce a locally optimal

solution. Therefore, it is most suitable as an initialization method to be followed by a
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batch, iterative method to refine the solution.

We formulate a set of constraints on the solution that hold exactly in the absence of

error, and then use SVD to find a solution that comes close to satisfying these constraints

when error is present. Our algorithm can be applied to fit matrices of any low rank to

data, but for notational simplicity we will assume that we are looking for a rank three

matrix. Our presentation has three parts. First we derive a set of constraints on the

solution that are valid in the error-free case. Then we describe a basic algorithm that

applies these constraints, and show how to allow for sensing error in this algorithm.

Finally, we discuss a number of heuristic modifications that increase robustness.

One can define an optimal solution to the missing data problem as one of finding

a low rank matrix whose elements are as near as possible to the elements present in

the original matrix. Our algorithm does not produce such an optimal solution. The

goal of our algorithm, rather, is to use simple linear algebra operations to estimate the

solution. This estimate can either be used directly, or as the starting point for an iterative

algorithm. We discuss these issues in more detail in subsequent sections.

3.1 Constraints for the Error-Free Case

We can regard each column of Q as giving the coordinates of a point in an m-dimensional

space. In this view, SVD finds the 3-D linear subspace, L, that is “closest” to the n m-

dimensional points in Q̂, when this matrix contains no missing elements. L is closest

to these points in that it minimizes the sum of square distances to them. At the same

time, SVD constructs the columns of Q by finding each point in L that is closest to the

corresponding point in Q̂.

When Q̂ has missing elements, we are free to fill in these elements to improve the

fit between model and data. A column of Q̂ with missing elements is a point with

some coordinates unknown; that is, it is an affine subspace in an m-dimensional space

(and is parallel to the axes of this space). Our problem in this case is to find the 3-D

linear subspace, L, that is closest to these affine spaces, as measured by the sum of

square distances between them. Q and the missing elements of Q̂ can then be found by

assigning each column of Q to be the point in L closest to the affine space represented

by the corresponding column of Q̂, and the missing elements of this column of Q̂ can be

filled by taking the point in this affine subspace closest to L.

To begin, we suppose there is no noise. Then L intersects all the affine spaces de-

scribed by the columns of Q̂. Let Ai, Aj, Ak denote three of these affine subspaces that
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do not intersect 3. Since L contains a unique point other than the origin in common

with each of these affine spaces, L must lie inside the space spanned by the points in

these three spaces. Therefore, each triple of columns of Q̂ constrains L to lie in some

linear subspace of Rm. The significance of this constraint will depend on the number of

missing elements in these columns. If the columns have no missing elements, they specify

L exactly. Alternately, if the columns have many missing elements, the affine spaces they

give rise to will be of high dimension, and may span a very high dimensional space; in

this case the constraint that L lie in this space will be a weak one.

We can combine constraints derived from many different triples of columns of Q̂ just

by taking the intersection of the linear spaces to which they lead. Specifically, let T be

some set of triples of affine spaces corresponding to columns of Q̂, and let span(Ai, Aj, Ak)

denote the linear space spanned by the points in the affine spaces Ai, Aj, Ak. Then we

have:

L ⊆ ∩{i,j,k}∈T span(Ai, Aj, Ak) (1)

Note that we get a subset, not an equality relationship. This means that if

∩(i,j,k)∈T span(Ai, Aj, Ak)

is three-dimensional we know L exactly, but if this intersection is of higher dimension we

do not. Moreover, if we are unsure of the rank of Q, ∩(i,j,k)∈T span(Ai, Aj, Ak) gives us

an upper bound on this rank.

3.2 The Algorithm

In a practical algorithm, we must allow for the possibility of sensing error. With error,

∩(i,j,k)∈T span(Ai, Aj, Ak) quickly becomes empty, because there is no linear subspace

that can perfectly match our data by intersecting the affine spaces associated with each

column. So in this case, we compute a linear subspace that comes close to lying in this

intersection.

To begin, we select l triples of columns of Q̂. For structure-from-motion, this is

addressed in Subsection 3.4. Let Si denote the linear space spanned by the i’th triple

of columns. A convenient way to take the intersection of these spaces is by taking the

complement of the span of their complementary spaces. Let S⊥i denote the orthogonal

complement of Si Let Ni denote a matrix representation of S⊥i . That is, each column of

3This assumption that the spaces do not intersect is not significant in practice. Since the affine spaces
are parallel to the coordinate axes, two spaces intersect only when for every row they have either identical
values, or one has a missing value. Such triples are easily discarded in the algorithm we describe.
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Ni represents a vector orthogonal to the space Si. Further, let S denote the space lying

in the intersection of all the Si, so that from above we know that L ⊆ S. Our task is to

compute S.

Now note that:

N = [N1N2...Nl]

provides us with a representation of S⊥. This is because a vector lying in the complement

of any Si cannot lie in S, the intersection of all the Si. Therefore, S can be found by

taking the nullspace of N.

In the presence of sensing error, the matrix N will typically have full rank, and its

nullspace will be empty. In this case, we want to find a 3-D linear space that is close

to being this nullspace, that is, the space that is most easily made into the nullspace

by allowing for small amounts of noise. This is done by taking the SVD of N , and

finding its three least significant components. This gives us an estimate of L as the 3-D

linear subspace most nearly orthogonal to the space spanned by N. Specifically, L is

estimated as the linear space that is orthogonal to the matrix closest to N according to

the Frobenius norm, such that this close matrix has a rank three null space.

It is important to note that the problem of finding the three least significant compo-

nents of N does not typically present numerical difficulties. This is essentially equivalent

to the problem of finding the three eigenvectors associated with the three smallest eigen-

values of a matrix. Although finding the exact values of these nearly zero eigenvalues

might prove difficult, finding their associated eigenvectors need not be so (if it were, one

could never hope to reliably find the nullspace of a matrix). Essentially, the speed and

accuracy with which we can find the three least significant components of N will depend

on the gap between the values of the three smallest singular values of N and the fourth

smallest singular value. As our experiments demonstrate, in practice this problem can

be accurately solved. For more on this subject, see Golub and van Loan[5].

The three least significant components of the SVD of N provide a representation of

L as three orthonormal column vectors that span L. We then use these to construct Q.

For each column of Q̂, we find the linear combination of the columns representing L that

best fit the elements that are not missing. Specifically, assume L is represented by three

orthonormal columns, which together we call L. Let Q̂i represent a column of Q̂, let

p be the indices of non-missing elements of Q̂i, and let Q̂p
i be the column obtained by

taking only the non-missing elements of Q̂i, and let Lp similarly be the submatrix of L

consisting of rows with indices in p. Then we estimate:

Qi ≈ L((Lp)+Q̂p
i )
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where (Lp)+ is the pseudoinverse of Lp.

3.3 Implementation Details

We now mention several details that are important to the implementation of this algo-

rithm. First, we describe how we compute the nullspace of the space spanned by three

affine spaces. Let Ci, Cj, Ck be three columns of Q̂ that give rise to three affine spaces

Ai, Aj, Ak. We note that if some row, h, of Ci, (or of Cj or Ck) is missing an element,

then row h will have a zero value for every element of the null space of span(Ai, Aj, Ak).

To see why this is true, consider two different completions of Ci that are identical except

in row h. Any column of the null space must have an inner product of zero with each of

these possible completions. This can only happen if the column of the null space is zero

in row h. Therefore, to compute the nullspace, we need only find the nullspace of the

submatrix of [CiCjCk] that is fully occupied, filling in the remaining rows of the nullspace

with all zeros.

Second, it can happen that the null space of span(Ai, Aj, Ak) is not an accurate con-

straint on L, due to numerical instability. As a simple example, suppose that Ai, Aj, Ak

are just three points that, along with the origin, nearly lie in some 2-D plane, P . Then

their span is 3-D, and in the absence of sensing error, would specify L exactly. However,

in practice any 3-D linear subspace that includes P will lie close to all three points, and

when noise is added their span will be a pretty arbitrary 3-D linear subspace that includes

P . It would therefore be mistaken to expect L to lie in their span. This situation, how-

ever, is readily detected. We compute the nullspace by applying SVD to the submatrix

of [CiCjCk] that is fully occupied. If this submatrix is not, or nearly not of full rank, we

know that the constraints derived from it are unreliable.

Third, is the issue of how we choose triples of columns with which to compute N. Here

we describe our method for the generic algorithm. Subsection 3.4 describes modifications

for application to structure-from-motion. We randomly sample a fixed set of column

triples of size l to compute N. However, we do not know ahead of time how many

columns of N each of these triples will produce. If N grows too big, finding its SVD

will be unnecessarily costly. We therefore also set a maximum value on the number of

columns of N needed, and we stop generating column triples when this size is reached,

even if we have not yet checked l triples. Also, in an effort to provide information about

all rows of N, we bias our selection of column triples. If we have no information about

some rows of N, then half the time we select a triple of columns that all have entries in

one of those rows.
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Fourth, it is always possible that the column triples that we have generated do not

sufficiently constrain L to allow us to accurately determine it, because Equation 1 is only

a subset relationship. We can also check this possibility. Recall that L is computed by

taking the three least significant components of N, based on its three smallest singular

values. If the fourth smallest singular value of N is also very small, we know that our

computation of L is unreliable. In this case, we simply report that the algorithm failed

to find an answer, although we might also try the computation again, hoping that a

larger value for l or a different random selection of column triples would produce more

information.

Fifth, it is possible that N does not directly contain enough information to allow us

to determine every column and row of Q̂. For example, a row of N will consist of all

zeros when every triple of columns selected had at least one missing element in that row.

In this case, we have gathered no information about that row’s value in the nullspace we

are computing. Also, it is possible that L does not allow us to estimate Qi as we have

indicated, because (Lp) does not have full rank, and we can not take its pseudoinverse.

In either of these situations, we simply estimate the maximum subrectangle of Q for

which we have data, and then extend this subrectangle to a least-squares estimate of

the full rectangle, in a manner that is similar to that proposed by Tomasi and Kanade.

It is possible that in attempting to extend a partial solution we do not have sufficient

information to stably complete the matrix. In this case, we report that our solution is

unstable. At the same time, we can also use a sixth heuristic, that of attempting our

method on the transpose of the data matrix, rather than on the original matrix. If this

produces a more accurate solution, we use it.

3.4 Applying the Algorithm to Structure-from-Motion

So far we have described a generic algorithm that can be applied to any problem of linear

fitting with missing data. The problem of structure-from-motion differs from this generic

problem in two ways: the fact that the x and y coordinates of a point are either both

known, or both missing; and the presence of translation. We modify our basic algorithm

slightly to take account of these facts.

First, a point’s x and y coordinates are observed together. This means that Q̂ cannot

have a completely arbitrary pattern of missing elements. To take advantage of this, we

apply the algorithm described above to the transpose of Q̂, so that each column contains

all the x or all the y coordinates in a single frame. The generic algorithm is effective

when column triples are chosen that have many entries in common. Since we know that
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the x and y columns from a single frame have all their entries in common, it makes sense

to always consider these together. So, rather than selecting a random sampling of triples

of columns, we select all pairs of frames in the motion sequence. Each of these provides

us with four columns that we may use to build N.

Second, when translation is present in a motion sequence, we may write the image

generation process in the form:

S =




S11,1 S11,2 S11,3 t1x

S12,1 S12,2 S12,3 t1y

.

.

.
Sm

2 1,1
Sm

2 1,2
Sm

2 1,3
tm

2 x

Sm
2 2,1

Sm
2 2,2

Sm
2 2,3

tm
2 y




P ≡




x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

1 1 . . . 1


 SP + E = Q̂

where (tix , tiy) represents the translation in frame i. This differs from the generic case

we have discussed because now Q̂ has rank four, and one of the vectors spanning its row

space is known to be 1, a vector of all ones. We therefore modify our algorithm to look

for a 4-D linear space that includes this vector.

Specifically, we consider all pairs of frames, i and j. For each pair, we form the

submatrix of: 


1 X̂i,1 Ŷi,1 X̂j,1 Ŷj,1

1 X̂i,2 Ŷi,2 X̂j,2 Ŷj,2

. . . . .

. . . . .

. . . . .

1 X̂i,n Ŷi,n X̂j,n Ŷj,n




consisting of the rows that have no missing elements. Suppose there are k such rows.

Provided that 4 < k, this k × 5 submatrix will have rank four, in the absence of sensing

error, and its nullspace will be represented by a k × (k − 4) matrix. We may use this

nullspace to create N in just the way we did for the generic algorithm. Since sensing error

will cause this submatrix to have rank five, we may use SVD to determine and discard

the least significant component, estimating the true, error free submatrix. As before, if

this component is significant, we may detect that our estimate of the component of N

due to this submatrix is likely to be unreliable, and discard it.

With these modifications, our algorithm can now be regarded as one that combines

together partial estimates of the scene structure from each pair of frames. While such

a two-frame algorithm would be easy to apply without missing data, when each pair of
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Frame ↓ coord. ↓ Point ⇒ 1 2 3 4 5 6 7 8 9 10 11 12
1 x X X X X X X X X X - - -

y X X X X X X X X X - - -
2 x X X X X X X - - - X X X

y X X X X X X - - - X X X
3 x X X X - - - X X X X X X

y X X X - - - X X X X X X
4 x - - - X X X X X X X X X

y - - - X X X X X X X X X

Table 1: An example pattern of missing data in a four frame motion sequence. ’X’
indicates that a value is observed. ’-’ indicates that the value is missing.

frames provides an estimate of structure for only a subset of the scene points it is not

obvious how these can be combined, and merged into a common reference frame. In a

sense, our algorithm is a solution to this problem.

4 Comparison to past methods

We are now in a position to better situate our new algorithm relative to previous work.

Our algorithm uses standard methods of linear algebra, primarily SVD, to estimate

structure and motion from missing data. The algorithm does not produce a solution

that is optimal, in the sense of minimizing the sum squared error between the estimated

structure and motion and the observations. Therefore, it is suitable as a method for

initializing a descent-type algorithm, which would improve our estimate, converging to

a locally optimal solution. Also, in some situations the initial estimate produced by our

algorithm may be sufficient without further refinement. In Section 5 we will evaluate the

overall effectiveness of our algorithm for these purposes. However, in this section, we will

compare our algorithm to other methods of obtaining an initial estimate of structure and

motion. Primarily, we compare to the imputation method of Tomasi and Kanade, with

some remarks about the implications of this comparison for initialization methods used

by filtering algorithms.

One significant question is how well each method makes use of the information that

is available to solve the structure-from-motion problem. We can show with a simple

example that our method is using more of this information than the imputation method.

In Table 1 we show an example, in which nine out of twelve points are visible in each

frame of a four frame motion sequence. For each of the six pairs of frames there are six
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points present. Using these, our algorithm derives a 6 × 5 submatrix (including a row

of ones) with rank four, and a rank two nullspace. Overall, N has twelve columns, two

for each pair of frames. These are not independent, and N will actaully have rank eight

(proof omitted). However, the nullspace of N has rank four, which describes the 4-D

linear subspace L. Therefore, our algorithm derives a correct solution.

This problem cannot, however, be solved using the imputation method. Two frames

can be used to derive the affine structure of six points, but only three of these points

appear in any additional frame. Therefore, the projection of this affine structure into

another frame cannot be determined. On the other hand, when any triple of frames is

considered there are only three points present in all three. This is not enough information

to determine affine strucutre or to determine rigid structure assuming scaled orthographic

projection. This demonstrates that our algorithm is applying more of the available

information in finding a solution. This may lead to more accurate results in the face

of sensing error, even when both methods can find a solution.

We should note that our method also may not be making use of all available constraint.

For example, a single column of the matrix places some constraints on L, since not all

linear subspaces will intersect the affine space that arises from all completions of a single

column. However, our method uses only r-tuples of columns to constrain L. Another way

to think about the missing data problem is to note that the missing elements are filled in

to produce a rank r matrix if and only if every (r+1)×(r+1) submatrix has determinant

zero. This can give rise to both linear, and non-linear constraints on the solution. We

conjecture that our method is essentially applying only the linear constraints that arise.

If this is so, it means that more powerful solution methods are possible, but perhaps only

by solving systems of non-linear equations.

We now present an experimental comparison between our method and the imputation

method. In general, with the imputation method it is not clear how to choose the initial

submatrix, and how to decide to which column or row to extend it. Therefore, we

have chosen to evaluate the methods in a simple scenario, in which these decisions are

straightforward.

We generate points in a synthetic motion sequence. In each sequence we select points

randomly inside a cube. We then generate frames at uniform intervals as we rotate the

object ninety degrees about the z-axis (in-plane rotation), and ninety degrees about a

randomly chosen axis in the plane (out-of-plane rotation). We also translate the points

by a total of half the width of the cube, in a random direction. In each frame, we

introduce six new points, which will all be visible for a total of five frames. Table 2
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Frame ↓ Pt. → 1 2 3 4 5 6 7 8 9 10 11 12 . . .
1 X X X X X X - - - - - -
2 X X X X X X X X X X X X
3 X X X X X X X X X X X X
4 X X X X X X X X X X X X
5 X X X X X X X X X X X X
6 - - - - - - X X X X X X
. - - - - - - - - - - - - .
. .
. .

Table 2: Pattern of missing data used to compare our method to imputation method.

illustrates this pattern of missing data. The total number of frames is varied. As the

number of frames increases, the problem becomes more difficult because each cohort of

points is mutually visible over a smaller and smaller rotation, and so their structure can

be less accurately determined. This provides a simple example of the type of sequence in

which structure from motion algorithms are commonly applied. We then add Gaussian

noise with a standard deviation of .25% of the maximum range of the elements. For a

500× 500 pixel image this would be comparable to a standard deviation of 1.25 pixels.

With this pattern of missing data, it seems clear that the imputation method would

be expected to begin with a fully occupied 5×6 submarix, and then extend to neighboring

columns and rows. We tested two possibilities: beginning in the upper left corner and

extending to the right and then downwards until the matrix was completed; and beginning

in the middle of the matrix, and extending first to the right and down, then to the left

and up.

Tables 3 and 4 compare the results of these two imputation methods to those of our

algorithm. We show both the sum of squares error between the reconstructed matrix and

the elements present in the original matrix, and also the error in the affine structure of

the points that each algorithm produces. In both cases, the original Tomasi and Kanade

algorithm, using SVD, can be applied to the filled in matrix to determine the points’

structure. Since scene structure will be known only up to an affine transformation,

we measure error after first finding the affine transformation that optimally aligns the

reconstructed points with the true scene points.

Our algorithm produces results that are superior to those of the imputation method

by a factor of between 7 and 100. This experiment also demonstrates the importance of

correctly handling missing data. Our algorithm doesn’t just do a better job of correctly
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Num. NEW IMPUTE IMPUTE
Frames TOP MIDDLE

9 .000136/(.000002) .004/(.001) .00047/(.00003)
11 .000168/(.000002) .011/(.002) .008/(.001)
13 .00028/(.00004) .011/(.002) .011/(.001)
15 .0015/(.0008) .016/(.002) .014/(.001)
17 .0029/(.0008) .024/(.002) .018/(.001)

Table 3: Comparison between our algorithm and imputation methods. Synthetic motion
sequences are generated as described in text. The number of frames used is shown in the
first column. The second column shows the average of the sum of squared error between
the reconstructed matrix and points present in data matrix for our algorithm. The third
column shows results for the imputation method beginning in the top left of the data
matrix. The fourth column shows results for imputation beginning in the middle. Results
shown are median/(standard deviation), over 100 trials.

Num. NEW IMPUTE IMPUTE
Frames TOP MIDDLE

9 .000052/(.000001) .004/(.001) .0005/(.0001)
11 .00013/(.000005) .014/(.002) .011/(.002)
13 .00036/(.00004) .017/(.002) .021/(.003)
15 .0026/(.0009) .029/(.003) .034/(.003)
17 .007/(.002) .053/(.004) .053/(.004)

Table 4: Results as in Table 3. Here, average error is shown in reconstructing the affine
structure of scene points.
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“hallucinating” the missing points, it also does a better job of determining the true scene

structure.

This experiment also suggests a possible comparison between our method and filtering

algorithms. McLauchlan et al, for example, initialize their algorithm in exactly the same

way as the imputation method that begins at the top of the matrix. Like the imputation

method on this example, they then update their estimate as each point and frame is

added. The methods of doing this are different, but for this example the imputation

method that starts in the upper left corner of the observation matrix has something of

the flavor of the filtering method of McLauchlan et al., and performs much less accurately

than our algorithm. However, we have not implemented or experimented with their

algorithm, so this observation should be treated only as a suggestion for a more detailed

comparison.

Finally, Kahl and Hayden[9] solve the missing data problem by deriving constraints

on the rotational part of the affine transformation and combining these. They describe

the relationship between the constraints they derive and the ones we do stating: “[Jacobs

method] can be seen as the ‘dual’ of [our] closure constraints...”. They also point out

that the method given for handling translation in [8] is incorrect. They then perform an

experimental comparison between their method and the generic version of our algorithm.

They apply our generic algorithm by estimating a rank four matrix, to capture rotation

and translation. While this is a reasonable approach, the method we give above is

preferable, since it makes explicit use of the fact that translation causes the row space of

the error free matrix to contain a vector of all ones, and improves on our earlier generic

method in other ways, described above. It is not clear how our new method would

compare to that of Kahl and Heyden, although the methods seem closely related.

5 Experiments

In this section we describe experiments to test the accuracy of our proposed method. In

these experiments we use our method as a starting point for iterative refinement to a

locally optimal solution, which is done using the algorithm of Shum et al. This algorithm

has the limitation that it does not allow for translation in the motion. We therefore use

motion sequences in which translation has been removed, and then compare the results

to those in which our algorithm is applied using sequences that are identical, but with

the addition of translation. Note that in [8] we reported experiments on structure-from-

motion using only the generic algorithm. The method described in this paper achieves
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considerably better performance.

In these experiments we compare eight different methods. The first (labeled NEW in

graphs) is our algorithm for fitting a rank three matrix to a matrix with missing elements.

When used to find the intensity manifold we randomly sample triples of columns from

the matrix, to build the nullspace. When used in structure-from-motion, we consider

all pairs of images in the sequence. NEW does not allow for translation in the motion

sequence. The second method, NEWTRANS, is just like NEW, but estimates a rank

four matrix in which one row is composed of all ones. NEWIT uses NEW to get an

initial estimate of the solution, then refines this estimate using the algorithm of Shum et

al. We must also measure the extent to which NEW contributes to NEWIT finding good

solutions. We therefore compare NEWIT to iterative refinement using random starting

points. RAN1 picks a random matrix as the starting point for Shum et al.’s algorithm.

RAN3 repeats this process with three different random starting points, and chooses the

solution with the least resulting error. RAN5 works analogously with five random starting

points. We compare these results to (GT) an estimate of ground truth and (GT-IT) an

estimate of the globally optimal solution (the one with smallest error) found by using

the solution in (GT) as a starting point for the iterative method. While this cannot

be guaranteed to converge to the globally optimal solution, it seems to provide a good

estimate of the best obtainable solution. When using simulated data, we have ground

truth available. For a real motion sequence, we use a solution based on all the data for

(GT). The code used in all of our experiments is publicly available from the website:

“http://www.neci.nj.nec.com/homepages/dwj/”.

We evaluated methods in three ways. First, we have defined the goal of linear fitting

as minimizing the sum of square differences between the elements present in a data matrix

and the corresponding elements of a new, low rank matrix. For this reason, we evaluate

methods based on how well they succeed in finding a low rank matrix to minimize this

error measure. Second, we measure the accuracy of each method in reconstructing scene

structure. Since this structure can be determined only up to a linear transformation,

we first apply a linear transformation to the output that best fits it to ground truth,

where available. Then we measure the deviation between the true structure, and the

structure found by each algorithm. The emphasis of these experiments is on the problem

of structure-from-motion, but we also include synthetic experiments that illustrate the

use of the algorithm in finding the set of intensity images (the intensity manifold) that

can be produced by a lambertian scene. In a few cases, our algorithm determined that

it could not find a stable answer. Average errors are shown with these cases excluded,
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and the number of unstable cases shown separately. Third, we measure how often each

iterative method succeeded in finding the best available solution. This is measured as

the percentage of times each method produced an error within 10% of the smallest error

found by any iterative algorithm.

A number of specific thresholds must be set in these experiments. We run the Shum

et al. algorithm either for 100 iterations, or until it converges with ten decimal places

of accuracy. In our algorithm, we select pairs of images or triples of columns until their

nullspace occupies ten times as many columns as the original matrix (with a maximum

limit of 1000 column triples, which in practice we hardly ever reach). In computing the

nullspace to each triple of columns, we take to be zero any singular values less than .1.

We compute L by taking the three least significant components of the matrix containing

all the nullspaces to column triples; if the fourth smallest singular value of this matrix is

less than .001 we determine that the result is unreliable, since there is not a well-defined,

3-D nullspace to the matrix.

We generate synthetic data in two settings. First, we generate points in a synthetic

motion sequence. In each sequence we select twenty points randomly inside a cube. We

then generate twenty frames at uniform intervals as we rotate the object ninety degrees

about the z-axis (in-plane rotation), and ninety degrees about a randomly chosen axis in

the plane. This provides a simple example of the type of sequence in which structure from

motion algorithms are commonly applied. We then assume that each point is occluded

for some fraction of the sequence. This fraction is randomly chosen for each point from

a uniform distribution. We vary the expected value of the occlusion length to vary the

number of missing elements in our experiments. The occluded frames for each point are

randomly assigned to either the beginning of the sequence, the end of the sequence, or are

split between the beginning and end, each with equal probability. We then add Gaussian

noise with a standard deviation of .25% of the maximum range of the elements. For a

500× 500 pixel image this would be comparable to a standard deviation of 1.25 pixels.

Next we generate random intensity images. First, we generate a scene containing 100

points, in which every scene point’s surface normal is chosen with a uniform distribution

on the unit half-sphere with positive z components. We select the albedo of each point

from a uniform distribution from 0 to 1. We then select light sources, of unit intensity,

and a direction that is drawn from the same distribution as the scene surface normals.

Each light source combines with the scene to generate an intensity image, with intensities

ranging from minus one to one. Gaussian noise is then added, with a standard deviation

of .01. Finally, intensities less than zero were considered to be missing values.
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Figure 1: One frame of the real motion sequence used.

Algorithm .2 .3 .4 .5 .6 .7
RAN1 .1325/(.0088) .2743/(.0149) .6942/(.0314) 1.052/(.0379) 1.630/(.0421) 2.336/(.0482)
RAN3 .0104/(.0037) .0175/(.0056) .0670/(.0137) .2042/(.0246) .5730/(.0337) 1.291/(.0610)
RAN5 .0003/(5e-6) .0031/(.0025) .0207/(.0058) .0759/(.0111) .3735/(.0263) .9991/(.0462)
NEW .0013/(2e-5) .0029/(.0001) .0491/(.0081) .1299/(.0138) .3292/(.0265) .9326/(.0680)
NEWIT .0003/(5e-6) .0007/(2e-5) .0228/(.0075) .0926/(.0161) .2686/(.0255) .9048/(.0670)
NEWTRANS .0012/(3e-5) .0040/(.0007) .0949/(.0117) .2607/(.0184) .5526/(.0261) .8394/(.0352)
GTIT .0003/(5e-6) .0007/(2e-5) .0077/(5e-5) .0069/(.0004) .0117/(.0006) .0210/(.0012)

Table 5: This table shows the error in affine structure computed on synthetic motion
sequences, for each algorithm and for missing data ranging from 20% to 70% of the data
matrix. Results are shown as mean/(standard deviation).

Finally, we have run our algorithm on data obtained from a real motion sequence

described in [15]. This sequence contained forty points tracked across eight images. One

of the frames is shown in Figure 1. In this sequence we generated artificial occlusions

exactly as described for the random motion sequences. We estimated the translation

by measuring the translation of the center of mass of those points present in adjacent

frames. Translation was removed before applying all methods except NEWTRANS. The

matrix was then scaled to give it roughly the same sized elements as in the synthetic

motion sequences, so that all the same parameters could be appropriately used.

Our new methods sometimes report that they were unable to find a stable solution.

Table 6 indicates how often this occurs, as the fraction of matrix elements that are missing

varies. It shows that the method begins to encounter problems only when 70% of the
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Figure 2: Structure-from-motion: The average error of six solution methods, with two
comparison solutions. Each point shows the sum of square errors between the data and
a rank three fit, averaged over 500 trials. Error bars show one standard deviation in the
data. Average error is plotted against the average fraction of frames, f , in which a point
is occluded. The top plot shows three solutions. On the bottom, we plot methods that
produce less error.
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Figure 3: Synthetic structure-from-motion: The fraction of times each iterative method
converged to within 10% of the best available solution found by any method.

Occlusion Level .2 .3 .4 .5 .6 .7
NEW Percentage Stable, synthetic 100 100 100 100 100 92.8
NEWTRANS Percentage Stable, synthetic 100 100 99.8 100 99.6 89.2
NEW Percentage Stable, real 100 100 100 100 100 96
NEWTRANS Percentage Stable, 100 100 100 100 100 96

Table 6: The percentage of trials of synthetic motion sequences in which the new algo-
rithm found a stable solution.
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Figure 4: Average residual error produced in experiments fitting a rank three matrix to
intensity images with missing data, averaged over 100 trials. RAN1, RAN3 and RAN5
show the iterative method with one, three and five random starting points, respectively.
NEW shows our method. NEW-IT shows our method used as a starting point for an
iterative solution. For comparison, GT shows ground truth, and GT-IT shows ground
truth used as a starting point for an iterative solution.
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Figure 5: Here we show how often the iterative methods converged to the best available
solution for intensity images. RAN1, RAN3 and RAN5 show the iterative method with
one, three and five random starting points, respectively. NEW-IT shows our method
used as a starting point for an iterative solution, and for comparison, GT-IT shows the
iterative solution with ground truth as a starting point.
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Figure 6: Structure-from-motion, a real sequence: Average errors for the real motion
sequence, displayed as in Figure 2.
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Figure 7: Structure-from-motion, a real sequence: Average errors in determining the
affine structure for the real motion sequence.
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Figure 8: The fraction of times each iterative method converged to within 10% of the
best available solution found by any method, for the real motion sequence.
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matrix elements are missing.

Beginning with the synthetic sequences, Figure 2 shows the sum of squares error

between the data matrix elements that are present, and the fitted matrix, for each solution

method. Table 5 shows the errors derived in the affine structure. The range of values

made them difficult to display in a graph. Figure 3 shows how often each iterative method

produced the best solution of any method. Figure 4 shows the sum of squares error for

the synthetic intensity images, and Figure 5 shows how often each iterative method found

the best solution. These are shown for all trials. And Figures 6, 7 and 8 show similar

results for the real motion sequence.

The first point to notice is that our new method produces good results, especially as

a starting point for an iterative solution. In the case of synthetic and real motion, our

method followed by an iterative solution produces significantly smaller errors than the

best solution found using five random starting points. Our method also finds the globally

optimal solution much more frequently than we do with five random starting points. In

fitting linear surfaces to intensity images, our method produces essentially perfect results,

even though this problem seems to be quite difficult when a random starting point is used.

This suggests that our method produces an effective starting point for finding the correct

solution, one that is much better than random.

Second, although we do not test NEWTRANS as a starting point for iterative re-

finement, we can see that it produces results approximately as good as those found by

NEW.

Third, we can see that when there are significant amounts of data missing, the motion

problem can be quite difficult. When 70% of the data are missing, even our new method

makes a significant number of errors. The difficulty of a motion problem will certainly

depend not just on the number of missing data, but also on the particular patterns of

occlusion and on the magnitudes of motion and the number of frames. However, we feel

that our experiments are based on a reasonable scenario, and that even more difficult

motion situations, with less motion and more occlusion, are of interest. Therefore, our

simulations indicate that real problems of interest may present a difficult challenge for

any existing algorithm, if an optimal solution is desired with very high probability.

6 Conclusions

Several vision problems have recently been treated as linear fitting problems. This is

especially attractive, because this is a linear optimization problem that can be efficiently
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solved using linear methods. The most notable example of this is the affine structure-

from-motion algorithm of Tomasi and Kanade. However, while the main virtue of the

Tomasi and Kanade algorithm is that it can integrate information using an extended

motion sequence, in such sequences it is quite likely that many points will appear and

disappear. This makes finding the optimal solution a non-linear optimization problem.

The main contribution of this paper is to find a linear method that approximates

the solution to this non-linear problem. We also show how to specialize this solution

for to determine structure-from-motion. The result of this method can then be used

as the starting point for an iterative method that finds a locally optimal solution. We

show theoretically that our approach can handle situations with less available data than

other methods. Empirically we show that this method is superior to other proposed

methods of initializing iterative algorithms, and describe experiment measure the overall

performance of our algorithm, primarily for the problem of structure-from-motion.
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