
Using FindBugs On Production Software

Nathaniel Ayewah, William Pugh

University of Maryland

ayewah,pugh@cs.umd.edu

J. David Morgenthaler, John Penix,
YuQian Zhou

Google, Inc.

jdm,jpenix,zhou@google.com

Abstract
This poster will present our experiences using FindBugs in
production software development environments, including
both open source efforts and Google’s internal code base.
We summarize the defects found, describe the issue of real
but trivial defects, and discuss the integration of FindBugs
into Google’s Mondrian code review system.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis; D.2.4 [Soft-
ware/Program Verification]: Reliability

General Terms Experimentation, Reliability, Security

Keywords FindBugs, static analysis, bugs, software de-
fects, bug patterns, false positives, Java, software quality,
Google

1. Introduction
Static analysis tools for software defect detection are becom-
ing widely used in practice. However, there is little public
information regarding the experimental evaluation of the ac-
curacy and value of the warnings these tools report. In this
poster, we discuss the warnings found by FindBugs, a static
analysis tool that finds defects in Java programs. We dis-
cuss the kinds of warnings generated and the classification of
warnings into false positives, trivial bugs and serious bugs.
We also provide some insight into why static analysis tools
often detect true but trivial bugs, and some information about
defect warnings across the development lifetime of soft-
ware release. We report data on the defect warnings in Sun’s
Java 6 JRE, in Sun’s Glassfish J2EE server, Eclipse 3.3,
and in portions of Google’s Java codebase. Finally, we re-
port on some experiences from incorporating static analysis
into the software development process at Google. This poster
reprises and updates our PASTE 2007 paper [1] with addi-
tional experiences during the spring and summer of 2007,
the integration of FindBugs into Google’s Mondrian code

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

review system, and preliminary work on an observational
study of the use of static analysis in production.

Static analysis for software defect detection has become
a popular topic, and there are a number of commercial, open
source and research tools that perform this analysis. Unfor-
tunately, there is little public information about the exper-
imental evaluation of these tools with regards to the accu-
racy and seriousness of the warnings they report. Commer-
cial tools are very expensive and generally come with license
agreements that forbid the publication of any experimental
or evaluative data.

In this poster, we report on results of running FindBugs
against several large software projects, including Sun’s JDK,
Eclipse and and portions of Google’s Java code base. Due to
space and time constraints, only a limited selection of data
is included in this extended abstract, but more complete data
is presented in our poster and available from the FindBugs
web site.

2. FindBugs
FindBugs is an open source static analysis tool that analyzes
Java classfiles looking for programming defects. The anal-
ysis engine reports nearly 300 different bug patterns. Find-
Bugs has a plugin architecture, in which detectors can be
defined, each of which may report several different bug pat-
terns. Many simple detectors use a visitor pattern over the
classfiles and/or the method bytecodes, often using a state
machine and/or information about the types, constant val-
ues, special flags (e.g., is this value the result of calling hash-
Code) and about values stored on the stack or in local vari-
ables. But detectors can also traverse the control flow graph,
using the results of data flow analysis such as type informa-
tion, constant values and nullness. The data flow algorithms
all generally use information from conditional tests, so that
information from instanceof tests and null tests are incor-
porated into the analysis results.

3. True But Low Impact Defects
One unexpected finding from looking at a number of real
defect warnings is that there are a number of cases in which
FindBugs has correctly diagnosed what seems to be an ob-
vious defect, yet it is also clear that the defect will not result
in measurable misbehavior of the program. This issue is dis-

805

// sun.jdbc.odbc.JdbcOdbcObject, lines 85-91
if ((b[offset] < 32) || (b[offset] > 128)) {
asciiLine += ".";

}
else {
asciiLine += new String (b, offset, 1);

}

Figure 1. Masked Error

cussed more fully in our PASTE 2007 paper [1], but we give
one example here.

Figure 1 shows a masked error. The variable b is a byte
array. Any value loaded from a byte array is treated as a
signed byte and sign extended to an integer in the range -
128 to 127. Thus, the test b[offset] > 128 will always be
false. However, the cases where the value would be greater
than 128 if treated as an unsigned byte are caught by the
test b[offset] < 32, so the defect cannot actually cause
misbehavior. This example also shows a fairly common
phenomenon where warnings are closely associated with
other questionable code. Here, the code is constructing sin-
gle character strings and incrementally appending them to a
String (which has quadratic complexity) rather than simply
appending a character to a StringBuffer.

3.1 When should such defects be fixed?
Should a defect that doesn’t cause the program to signifi-
cantly misbehave be fixed? The main arguments against fix-
ing such defects is that they require engineering resources
that could be better applied elsewhere, and that there is a
chance that the attempt to fix the defect will introduce an-
other, more serious bug that does significantly impact the
behavior of the application. The primary argument for fixing
such defects is that it makes the code easier to understand
and maintain, and less likely to break in the face of future
modifications or uses.

When sophisticated analysis finds an interprocedural er-
ror path involving aliasing and multiple conditions, under-
standing the defect and how and where to remedy it can
take significantly more engineering time, and it can be more
difficult to have confidence that the remedy resolves the is-
sue without introducing new problems. However, most of
the warnings generated by FindBugs are fairly obvious once
you know what to look for, can be understood by looking at
a few lines of code, and have straight forward and obvious
fixes. Thus, with FindBugs warnings it is often possible to
just understand the defect and fix it without expending the
effort required to do a full analysis of the possible impact of
the fault (or the fix) on application behavior. However, even
simple defects suggest holes in test coverage and additional
unit tests should be created to supplement defect fixes.

4. Common bug patterns
FindBugs reports hundreds of bug patterns, and there is a
long tail of bug patterns (i.e., many bug patterns that effec-
tively report problems but do so rarely; perhaps once per
million lines of code). However, there are some basic bug
patterns that are relatively common, including null pointer
dereferences, invoking toString or equals on an array, ig-
noring an important return value, comparing incomparable
types using equals and infinite recursive loops.

5. Experiences at Google
At Google, FindBugs is automatically run over any modified
code, generating XML. The XML file is then imported into a
database, which also contains reports from other static anal-
ysis tools. The instance-hash mechanism described in [2] is
used to allow a defect to be matched with previous reportings
of that warning. Previously, the database was reviewed by
two engineers, who performed bug triage, evaluating which
warnings should be reported to developers. A cost/benefits
analysis showed that this would be the most effective way to
evaluate which bug patterns were consistently appropriate to
report to developers and to gain more experience with cap-
turing and reporting FindBugs results. From this period, the
result include:

• 1,307 issues identified and reviewed
• 938 reported as bugs to developers
• 651 fixed by developers

After gaining experience and confidence with FindBugs,
we wanted to move the use of static analysis closer to de-
velopers, since the most effective time to have a developer
review a static analysis warning is as soon as possible af-
ter they wrote or touched the code in which the warning is
generated. Thus, we have just finished incorporating Find-
Bugs into Google’s Mondrian code review system. When-
ever an engineer submits a code change for review by a co-
worker, the person doing the review sees the issues identified
by static analysis in both the original and modified version
of the code.

More details and experimental details available at our
poster.

References
[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and

Y. Zhou. Evaluating static analysis defect warnings on
production software. In PASTE ’07: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 1–8, New York, NY,
USA, 2007. ACM Press.

[2] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect
warnings across versions. In MSR ’06: Proceedings of the
2006 international workshop on Mining software repositories,
pages 133–136, New York, NY, USA, 2006. ACM Press.

806

