
Gradual Typing Embedded Securely in JavaScript

N. Swamy C. Fournet A. Rastogi K. Bhargavan J. Chen P.-Y Strub G. Bierman
MSR INRIA IMDEA

Abstract
JavaScript’s flexible semantics and lack of types make writing cor-
rect code hard and writing secure code extremely difficult. To ad-
dress the former problem, various forms of gradual typing have
been proposed, for example, Closure and TypeScript. However,
supporting all common programming idioms is not easy; for exam-
ple, the TypeScript type system is deliberately unsound. Here we
address also the latter problem, and propose a gradual type system
and implementation technique that additionally provides important
security guarantees.

We present TS?: a gradually-typed core of JavaScript. Like
TypeScript, TS? is translated to JavaScript before execution. In con-
trast, TS? features full runtime reflection over three kinds of types:
(1) simple types for higher-order functions, recursive datatypes and
dictionary-based extensible records; (2) the type any, for dynami-
cally type-safe TS? expressions; and (3) the type un, for untrusted,
potentially malicious JavaScript contexts in which TS? is embed-
ded. Our main theorem guarantees the type safety of TS? despite its
interactions with arbitrary JavaScript contexts, which are free to use
eval, stack walks, prototype customizations, and other offensive
features. Its proof employs a novel use of type-preserving compila-
tion, wherein we prove all the runtime invariants of the translation
of TS? to JavaScript by showing that translated programs are well-
typed in JS?, a previously proposed dependently typed language for
proving functional correctness of JavaScript programs.

We describe a prototype compiler, a secure runtime, and sample
applications for TS?. Our examples illustrate how web security pat-
terns that developers currently program in JavaScript (with much
difficulty and still with dubious results) can instead be programmed
naturally in TS?, retaining a flavor of idiomatic JavaScript, while
providing strong safety guarantees by virtue of typing.

1. Introduction
Writing secure JavaScript is hard. Even simple functions, which
appear safe on the surface, can be easily broken. As an illustration,
consider the script below, where protect(send) returns a function
that interposes an access control check on send.

function send(url ,msg) { ... }
function protect(send) {
var whitelist ={"http ://www.google.com/mail":true ,
"http ://www.google.com/plus":true};
return function (url , msg) {
if (whitelist[url]) { send(url , msg); }}}
send = protect(send);

If this script were to run in isolation, it would achieve its in-
tended functionality. However, JavaScript programs rarely run in
isolation—programmers explicitly link their code with third-party
frameworks, and, worse, unexpected code fragments can be in-
jected into the web sandbox by cross-site scripting attacks. For ex-
ample, the following script running in the same sandbox as protect

could succeed in sending a message to an unintended recipient.

Object.prototype["http :// evil.com"]=true;
send("http :// evil.com", "bypass!");

This is just one attack on protect, a function simplified from
actual scripts in the OWASP CSRF and Facebook APIs (see §66)
that intend to protect calls to XMLHttpRequest and PostMessage, re-
spectively, instead of send. Experimentally, we found and reported
several security flaws in their scripts, suggesting that such APIs are
difficult to reliably protect from arbitrary JavaScript. Unintended
callbacks to an untrusted caller (caused, for example, by implicit
coercions, getters or setters, prototype hacking, and global object
overwriting) are difficult both to prevent and to contain.

1.1 Attacks ≈ Type Errors
Arguably, each of these attacks can be blamed to some uncaught
type errors. Almost any dynamic type-safety error while running
a sensitive script can be exploited by a malicious context, as fol-
lows. Anticipating that the script will dereference an otherwise un-
defined property x, which in JavaScript would just return the value
undefined, a hostile context can define

Object.defineProperty(Object.prototype ,"x",
{get:function (){/* exploit */}});

then run the script and, as x is dereferenced and triggers the call-
back, access any argument on the caller stack. Thus, for protecting
good scripts from bad ones, type errors in JavaScript are just as
dangerous as buffer overruns in C. Despite the numerous dynamic
checks performed by the JavaScript runtime, some stronger notion
of type safety is called for.

Other researchers have made similar observations. For exam-
ple, at POPL last year, Fournet et al.Fournet et al. (20132013) show several attacks
on a similar piece of code and argue that carefully controlling the
interaction between a script and its context is essential for secu-
rity. They show how to compile f?, a statically typed, ML-like
source language to JavaScript in a fully abstract way, allowing
programmers to write and reason about functions like protect in
ML, while their compiler generates secure JavaScript automati-
cally. This is an attractive design, but the sad truth is that mil-
lions of JavaScript programmers are unlikely to switch to ML.
Meanwhile, Bhargavan et al.Bhargavan et al. (20132013) have developed DJS, a mini-
mal, statically typed, secure core of JavaScript, primarily for writ-
ing first-order string-processing functions using arrays of fixed
size. DJS is suitable for writing security-critical code, like cryp-
tographic libraries, and Bhargavan et al. prove that the behavior
of programs accepted by the DJS type checker is independent of
the JavaScript environment in which they may run. A third line of
work is by Taly et al.Taly et al. (20112011), who propose a subset of JavaScript
called SESlight, and a static analysis for it to decide whether or not
a program is isolated from its environment. Although we find this a
promising line to pursue, isolation in SESlight currently works only
if the entire environment in which the program runs is also pro-
grammed in SESlight, an assumption hard to validate in the pres-
ence of cross-site scripts. A fourth line of work considers dynamic

1 2013/7/15

information flow type systems for JavaScript (Austin and FlanaganAustin and Flanagan
20122012; De Groef et al.De Groef et al. 20122012; Hedin and SabelfeldHedin and Sabelfeld 20122012), but their
guarantees only hold when all the code in the JavaScript context
can be typed (at least at the lowest security level).

1.2 TS?: a gradually type-safe language within JavaScript
This paper presents TS?, a source programming language that re-
tains many of the dynamic programming idioms of JavaScript,
while ensuring type-safety even in an untrusted JavaScript environ-
ment. TS? supports writing functions like protect exactly as shown,
while a compiler from TS? to JavaScript ensures that the access
control check in protect cannot be subverted.

Although significantly more flexible than f? or DJS, TS? still
rules out many inherently unsafe features of JavaScript for the code
we protect, thereby enforcing a stricter programming discipline and
facilitating security code reviews. We intend TS? to be used to pro-
tect security-critical scripts—guarding, for instance, sensitive re-
sources and capabilities—executed on web pages that also include
dynamically loaded, untrusted, potentially malicious scripts. By ne-
cessity, most of the code running on these pages is provided by
third parties; for the moment, we leave such code unchanged (and
unprotected). Nonetheless, by lightly rewriting the security-critical
scripts, and gradually typing them, we enforce a strong notion
of dynamic type-safety. In addition, we protect the scripts’ inter-
face, using type-directed wrappers to shield them from adversarial
JavaScript environments. This places these scripts on a robust type-
safe foundation, from which we can reason about their security.

TS? is inspired by TypeScript,11 a recent extension of JavaScript
with a type system based on gradual typing (Siek and TahaSiek and Taha 20062006).
TypeScript provides primitive types like number and string, function
and object types, as well as interfaces and classes. The most recent
version supports generic types. All types are subtypes of any, the
type of arbitrary JavaScript code. In less than a year since its re-
lease, TypeScript has seen promising uptake by the JavaScript com-
munity, e.g., over 150 popular JavaScript frameworks and libraries
now have TypeScript definitions.22 Other gradually typed variants of
JavaScript, like Google’s Closure,33 are also commonly used. How-
ever, these type systems do not provide any runtime safety guar-
antees. Indeed, since TypeScript and Closure permit programs to
include all the unsafe features of JavaScript, their type systems are
intentionally unsound. Even unsound types provide value, e.g., they
can be used for automatic code-completion, but sound types can do
so much more! Hence, we design and implement TS?, with the fol-
lowing features:
A statically typed core of functions, datatypes and records.
The base type system of TS? includes primitive types like unit,
bool, number and string; higher-order function types, recursive
datatypes, and extensible records of fields with optional mutability
annotations. Records are equipped with a structural subtyping re-
lation. For example, the type point defined below is a subtype of a
record that omits some of its fields, and function subtyping is, as
usual, contravariant on the arguments and covariant on the results.
{x:mutable number;y:mutable number;setX:number ->unit}

Dynamically typed fragment. We introduce a type any, for dy-
namically typed TS? expressions. All the types from the statically
typed core are subtypes of any, and any TS? term whose subterms
all have type any can always be given the type any. In the spirit of
JavaScript, in the any-fragment, we view records as extensible dic-
tionaries with string-valued keys. TS? supports the use of computed
properties, e.g., in any-typed code, expressions like p["set"+ "X"] or

1 http://www.typescriptlang.org/http://www.typescriptlang.org/

2 https://github.com/borisyankov/DefinitelyTypedhttps://github.com/borisyankov/DefinitelyTyped

3 https://developers.google.com/closure/compiler/https://developers.google.com/closure/compiler/

whitelist[url] are legal ways to safely project the appropriate field
from the underlying object, if it exists. As far as we are aware, ours
is the first gradual type system to soundly support dictionary-based
mutable records and computed properties.
Runtime reflection over types. Case analysis on the runtime type
of a value is a common idiom in JavaScript and other dynamically
typed languages—Guha et al.Guha et al. (20112011) present several typical uses of
JavaScript’s typeof operator. TS? embraces this idiom and compiles
programs with runtime type information (RTTI) to support intro-
spection on all source types at runtime, e.g., <isTag point>p checks
if p’s RTTI is a structural subtype of point. In addition to providing
an expressive source programming construct, RTTI also forms the
basis of an efficient and simple enforcement mechanism for grad-
ual typing. Interactions between the statically typed core and any
do not require further complex language features like wrappers for
higher-order contracts (Findler and FelleisenFindler and Felleisen 20022002).
un, the type of the adversary, mediated by wrappers. Finally,
and most distinctively, TS? provides a second dynamic type, un,
the type of arbitrary, potentially adversarial JavaScript expressions.
Our un type is reminiscent of types for adversaries, as proposed
by Gordon and JeffreyGordon and Jeffrey (20012001). However, unlike prior uses of un
in the context of secure compilers (e.g. Fournet et al.Fournet et al. 20132013), un
is a first-class type in TS?: un values may be stored in records,
used as arguments and results of functions, etc. However, un is
incomparable to any in the subtyping relation and, in contrast with
any, all operations on un values are mediated by (higher-order)
wrappers that safely build coercions to and from un (as well as
other types). The wrappers enforce a strict heap separation between
the un-context and TS?, ensuring that adversarial code cannot break
the internal invariants of TS?.

1.3 Evaluating TS?: theory and practice
We have developed a prototype implementation of TS?. Our im-
plementation takes as input TS? concrete syntax (which resembles
JavaScript with type annotations) and emits JavaScript concrete
syntax.

We formalize our compiler as a type-directed translation rela-
tion (§33). To formalize properties of the translated program, we
give TS? a translation semantics to JS?, a dependently typed model
of JavaScript developed by Swamy et al.Swamy et al. (20132013), which is in turn
based on λ JS by Guha et al.Guha et al. (20102010). Precise monadic refinement
types in JS? allow us to conveniently phrase our metatheory (§44) in
terms of type-correctness of JS?, yielding three main properties:

Memory isolation: the adversary cannot directly read, write, or
tamper with TS? objects.

Static safety: statically typed code is safely compiled without
any runtime checks, even in the presence of type-modifying
changes to objects.

Dynamic safety: runtime type information is sound and at least as
precise as the static type.

Experimentally, we evaluate TS? by programming and adapting
several security-sensitive JavaScript web libraries (§66). Our exam-
ples include a OWASP reference library to protect against cross-
site request forgeries (CSRF) (Barth et al.Barth et al. 20082008); and an adaptation
of secure login and JSON-validation scripts within the Facebook
API.44 Our main contributions include:

(1) the design of a gradual type system and RTTI support for safely
composing statically typed, dynamically typed, and arbitrary
JavaScript; (§33)

(2) a type safety theorem and its proof by translation to JS?; (§44)

4 https://developers.facebook.com/docs/reference/javascript/https://developers.facebook.com/docs/reference/javascript/

2 2013/7/15

http://www.typescriptlang.org/
https://github.com/borisyankov/DefinitelyTyped
https://developers.google.com/closure/compiler/
https://developers.facebook.com/docs/reference/javascript/

(3) a prototype implementation, including a protocol to ensure that
our runtime support runs first on pages hosting compiled TS?,
and securely initializes our type invariant; (§55)

(4) security applications, illustrating a series of authorization and
access control patterns taken from popular security-sensitive
web applications and libraries, motivated by new attacks. (§66)

Our results lead us to conclude that TS? provides a novel, effective
application of gradual typing as the foundation of secure program-
ming within JavaScript.

The latest version of our compiler, including programming ex-
amples, attacks, and sample web application deployments, is avail-
able at http://research.microsoft.com/fstarhttp://research.microsoft.com/fstar.

2. An overview of TS?

We begin by presenting the design of TS? informally, using several
small examples for illustration.

2.1 Gradually securing programs by moving from un to any

While we envisage TS? as the basis of a full-fledged gradually typed
web-programming language, we initially consider JavaScript pro-
grammers willing to harden safety- and security-critical fragments
of their code. They can start by giving their existing JavaScript code
the type un in TS?, and then gradually migrating selected fragments
to safe (but still dynamically typed) any-typed code in TS?.

This exercise is valuable since any code in TS? enjoys a memory
isolation property, a robust foundation upon which to build secure
sub-systems of a larger program. Memory isolation alone prevents
many common attacks. For example, the prototype poisoning attack
of §11 occurs because of a failure of memory isolation: the com-
mand whitelist[url] causes a prototype-chain traversal that ends
with reading a field of Object.prototype which, unfortunately, is
a reference to an object controlled by the adversary. By re-using
protect, unchanged, as a TS?function, the whitelist has type any,
and the attack is foiled. Specifically, from memory isolation, we
can prove that every dereference of a field of any object in TS? will
only read the immediate fields of that object and will never access
a prototype controlled by the adversary. This ensures that whitelist
[url] returns true only if url is immediately in whitelist.

Undecorated TS? programs can generally be given the type any
(so long as they are well-scoped). Every function parameter in an
unannotated TS? program defaults to the type any; every var-bound
variable is given the type of its initializer. Under this convention, in
the program from §11, the type of protect is any -> (any,any)-> any,
which is a subtype of any. When deploying a TS? program, we
assume that the JavaScript global object (the window object in most
browsers) and all objects reachable from it are under control of
the attacker. Thus, it is not safe to simply store protect(send) into
window.send, since that would break memory isolation and leak a
value of type any to un-safe code—our type system prevents the
programmer from doing this by mistake.

Instead, TS? provides wrappers to safely export values to the
context. The TS? expression wrap(un)(protect(send)) wraps the
protect(send) closure and the resulting term has type un, indicating
that it is safe to hand to any JavaScript context while preserving
memory isolation. Dually, for e:un, the expression wrap(any)(e) im-
ports e safely from the context and gives it the type any.

Providing JavaScript implementations of wrap is non-trivial. We
base our implementation on wrappers defined by Fournet et al.Fournet et al.
(20132013). Their wrappers are designed to safely export statically
typed values from the translation of an f? program (roughly, a sim-
ply typed subset of ML) to its JavaScript context; and to import
untyped values from the context into f? at specific types. For ex-
ample, Fournet et al.’s down(t∗u) exports a pair of translated f? val-
ues (v1,v2) of type (t ∗ u) to the context, by building a new object

with two fields initialized to downt(v1) and downu(v2). A correspond-
ing wrapper up(t∗u) does the converse, safely copying a pair from the
context and building a value that is the translation of an f? pair of
type (t ∗u). Fournet et al. provide upt and downt wrappers for types t
including unit, bool, string, number, pairs, recursive datatypes,
and functions. We extend their constructions to additionally build
wrappers to and from the type any.

To illustrate simple wrappers in action, we elaborate on our first
example. Suppose we wished to protect window.send (a fictitious
but simpler stand-in for JavaScript’s XMLHttpRequest object) with
an access control check. To support this, the standard library of
TS? provides a facility to read fields from and write fields to the
global object by including the following safe interface to the window

object implemented in JavaScript. The object win shadows the
fields of the window object, safely reading and writing it within a
wrapper, ensuring that the attacker-controlled window does not
break memory isolation. Using win within a TS? program, we can
safely import window.send, protect it, and export it back to the
context using the following snippet of code, typed in a context
where the win object has mutable un-typed fields. Of course, the
attacker may a priori obtain a copy, and even redefine window.send

before our code has the chance to protect and update it, but this is
an orthogonal problem, solved once for all TS?programs—§2.32.3 and
§55 present our novel mechanisms to ensure first-starter privilege.

val win:{send: mutable un; . . . }
win.send = wrap(un)(protect(wrap(any)(win.send)));

Wrappers are expensive, since they deeply copy the contents of
objects back and forth, and—by design—they are not necessarily
semantics-preserving. (For instance, they sanitize values, filter out
some properties, and prevent some aliasing.) Thus, it is useful to at-
tempt to minimize the amount of copying, while not compromising
security. With this in mind, we can rewrite protect, adding a few
types, as shown below.

function protect(send:(un ,un) -> un) {
var whitelist ={"http ://www.google.com/mail":true ,
"http ://www.google.com/plus":true};
return function (url:string , msg:un) {
if (whitelist[url]) send(wrap(any)(url), msg);}}
win.send=wrap(un)(protect(wrap((un,un)->un)(win.send)

));

Intuitively, the msg argument in the closure returned by protect

is treated abstractly, i.e., we never attempt to read from it. As
such, there is no need to import that argument from the context
(potentially performing a deep copy). On the other hand, the url

argument is not abstract—it is used to project a field from the
whitelist, and, as such, it had better be a string. The type system
of TS? gives us the flexibility to express exactly what should be
imported from the context, helping us find a good balance between
security and performance. The explicit use of un and wrappers
wrap, which coerces its argument e to the requested type t, are
all advances of TS? relative to prior languages, e.g., f?, or for that
matter, any prior gradually typed programming language.

2.2 Expressing invariants with assertions over runtime types
As can be expected of gradual typing, a TS? program migrated
from un to any can then, with some effort, be made increasingly
statically typed. Static types can improve runtime safety, robustness
of code, modularity, as well as provide better IDE support. Static
types in TS? also improve performance relative to any-typed code
and, relying on RTTI, can enforce data invariants. This is enabled
by static safety and dynamic safety, two properties (in addition to
memory isolation) provided by TS?.
Static Safety. TS? ensures that, at runtime, no failures happen
during the execution of statically typed parts of the source program.
Since there are no runtime checks in the compiled JavaScript for

3 2013/7/15

http://research.microsoft.com/fstar

such parts, as a bonus, the performance of statically typed TS? code
will approach that of native JavaScript (and potentially exceed it, if
the type information can be communicated to the VM).
Dynamic Safety. Every TS? value v : t (where t 6= un) is compiled
to JavaScript with runtime type information (RTTI) that initially
reflects v’s static type t. TS? ensures that, while v’s RTTI may
evolve during execution (e.g., as fields are added to an extensible
record), it is always (a) a subtype of v’s static type t, and (b) a
sound approximation (supertype) of v’s most-precise type. We call
this property dynamic safety.

As an illustration, consider the example below, which codes up
a lightweight form of objects with extensible records and closures
in TS?, where point is the type defined in §11.

function Point(x, y) {
var self = {};
self.x=x;
self.y=y;
self.setX=function(d:number) { self.x = d; };
return setTag(point)(self);}

The function Point creates a new point. It allocates a new empty
record and stores it in the local variable self, then it adds three
fields x, y, and setX. The static type of self is just the empty
record. However, TS? allows us to add more fields to self than those
documented in its static type. As such, the static type of a record
only describes a subset of the fields in the term, as is usual with
width-subtyping. Deleting fields from records is also possible—we
discuss this in more detail in §33.

In the last line of Point, setTag(point)(self) checks at runtime if
the content of self is compatible with the point type, and fails other-
wise. The term setTag(point)(self) has static type point, although
the static type of self remains unchanged. In order to implement
checks like setTag(point), every TS? term compiled to JavaScript is
augmented with RTTI to record its type.

Assertions like setTag allow source programmers to safely up-
date RTTI, while maintaining the runtime type invariant. Once
a value has been tagged as a point, then it is guaranteed to al-
ways remain a point. A programmer may choose to add fields to
a point and further update its type information (e.g., turning it into
a coloredPoint), but it will always contain at least the fields of a
point. Any attempt to delete, say, the x field, or to change it in a
type-incompatible way (e.g., using a dynamically typed alias to the
point) will cause a runtime error.

In contrast, statically typed code raises no such errors. TS? infers
that Point has type (any,any)-> point and so the code below is
statically type safe, and does not require any runtime checks.

var o = Point (0,0); o.setX (17);

As another example,55 consider that popular web frameworks,
like Dojo, provide implementations of the JSON Schema standard.66
This allows programmers to validate JSON data, writing verbose
schemas for them also as JSON objects.

For example, to describe a schema for an array of records
containing pairs of user ids and names, one can write the following
JSON schema.

schema ={"type" : "object", "properties" :
{"users" : { "type" : "array",
"items" : { "type" : "object",
"properties" : {
"id": { "type": "number" },
"user": { "type" : "string" }}}}}}

The JSON object o below matches this schema—this can be
checked by calling dojox.json.schema.validate(o,schema).

5 Based on http://davidwalsh.name/json-validationhttp://davidwalsh.name/json-validation.
6 http://tools.ietf.org/html/draft-zyp-json-schema-03http://tools.ietf.org/html/draft-zyp-json-schema-03

In TS?, data invariants can be expressed and enforced directly
using types, rather than via schemas. For example, to check that
the string "{users:[{id:1,user:"david"},{id:2,user:"walsh"}]}" can
be parsed into an array of user identities, we can write the TS? code
below, assuming that JSON.parse has type string -> any. (We have
programmed a similar parser in TS?; see also §6.26.2 for a simpler,
JSON-like query parser in the Facebook API.)

type users = array {id:number; user:string}
function check(j:string) : users {
var o = JSON.parse(j);
if(canTag(users)(o)) { return setTag(users)(o); }
else { return []; }}

The schema is captured by the type users. We parse a string j as
JSON using JSON.parse, then use the TS? operator canTag(t)(o) to
check that o’s contents are consistent with t. If the check succeeds,
we stamp o as a valid users object and return it.

2.3 Reliable primitive operations
Since the global window object is shared with the adversary, all ob-
jects reachable from window may be compromised. This includes all
built-in objects provided by the VM, e.g., Object.prototype, Array

.prototype, the default String object, and others. In order to en-
sure memory isolation, translated TS? programs should never read
from any of those objects. This is remarkably difficult to arrange
in JavaScript, since several primitive operations, e.g., reading and
writing fields, depend on base prototypes, as illustrated in §11. Thus,
in the face of attacker-controlled prototypes, even simple manipu-
lations of objects are unreliable. There are two ways (that we know
of) out of this conundrum.
Statically determined field accesses. In JavaScript, irrespective of
Object.prototype, the expression var x = {f:0} reliably builds an
object with a single field f initialized to 0 and assigns it to the
local variable x. Thereafter, if we write x.f = 1, despite the pro-
totype alteration, JavaScript reliably updates field f of x to 1. These
guarantees were sufficient for compiling f?, since, by typing, one
can statically determine the set of fields that can be legally pro-
jected from an object. However, this approach seems infeasible for
extensible records, arrays, and dynamically computed field names.
Problematically, the code var x={}; x.f=1 is not reliable, e.g. when
Object.prototype has a setter on field f, and this is precisely the kind
of code we would like to support (see Point in §2.22.2).
Object.defineProperty. Our alternative approach is based on the
JavaScript primitive function defineProperty. For example, the ex-
pression Object.defineProperty({}, "f", {value:17}) reliably adds
or mutates the property "f" in the new object {} to the value 17,
without traversing the prototype chain to Object.prototype. Option-
ally, the third argument to defineProperty can contain metadata to
make the property immutable.

We are still left with two problems. First, the VM makes
defineProperty available as a field window.Object, and the adversary
can simply redefine it with some other malicious function. Second,
while defineProperty gives us a way to safely update an object, we
also need a way to safely enumerate the fields of an object, e.g., to
iterate over all the elements of an array.

To solve these problems, compiled TS? programs are linked
with a library called boot.js. This library is intended to be the first
piece of JavaScript that runs on a page—§55 discusses how to make
a script run first, reliably, before any adversarial script. To solve
the first problem, boot.js takes a clean copy of defineProperty (and
many other primitives) and stores it in an immutable field. Later, the
translated TS? code accesses defineProperty from this field, rather
than Object.defineProperty. To address the second problem, boot.js
defines a base object called Q. Later, all record and datatype values
in TS? will be translated to instances of Q. The Q object provides
each of its instances with a facility for safely reading, writing, and

4 2013/7/15

http://davidwalsh.name/json-validation
http://tools.ietf.org/html/draft-zyp-json-schema-03

enumerating its fields. We show a fragment of boot.js below, but
first provide a primer on JavaScript objects.
A brief review of JavaScript’s prototype-based objects. To cre-
ate a new object x whose prototype is some other object y, one uses
the following JavaScript recipe. Define a function, say function Y()

{ this.f=17;}; then set Y.prototype = y; and call x = new Y(). When
executing x = new Y(), JavaScript constructs a new empty object o
whose internal field __proto__ is set to y; then calls the function Y

with the this parameter bound to o, so that Y can initialize the con-
tents of o. At the end, we have in x the object o with the field f set to
17, unless, of course, y or one of its prototypes has overridden the
meaning of assignment for field "f".

1 function boot() {
2 var Q = function () { . . . }
3 Q.defineProperty = Object.defineProperty;
4 Q.die = function () { Q.die(); };
5 Q.prototype.set = function(p,v) {
6 Q.defineProperty(this ,p,{ value:v}); . . . return v;}
7 Q.prototype.hasField = function(f) { . . . };
8 Q.isTag = function (t,t’) { . . . }; . . .
9 Q.wrap = function (t,t’) { . . . };

10 Q.prototype.freeze (); Q.freeze ();
11 Q.defineProperty(this , "Q",
12 {value:Q, writable:false , configurable:false});
13 }; boot(); boot=undefined;

The listing above defines a function boot that is run once and
then discarded. Within the scope of the function, we define a con-
structor function Q. and e.g. a property defineProperty to keep
a pristine copy of the initial Object.defineProperty. Line 55 de-
fines Q.prototype.set, a function to reliably add a field to ev-
ery Q object; elided elements of this function also record fields
as they are added to an object, enabling us to reliably imple-
ment functions like hasField (line 77) that allow us to enumerate
and test the existence of properties in an object. Lines 88–99 de-
fine functions that implement queries and coercions on runtime
types and values. For example, source expressions like wrap<un>(

protect(send)) are translated by our compiler to a call to Q.wrap

((|(any,any)->any|),(|un|))((|protect(send)|)), where (|t|) is the repre-
sentation of t as a JavaScript value, defined in §33. Q.wrap takes the
representations of both the source and the target types as param-
eters. Line 1010 calls the JavaScript function freeze, to make Q and
Q.prototype immutable. Finally, line 1111 registers the Q object in
this.Q (where this is the global object) and makes it immutable.

2.4 Embedding TS? in JavaScript
The Q object in boot.js provides a trusted core functionality upon
which we can build a secure compiler. In this section, we outline
the end-to-end embedding of protect and Point within JavaScript.
There are a few broad features of the translation that we focus on:

• Translating all objects to instances of Q.
• Adding runtime-type information to every object and function.
• Checking runtime type information in the any fragment.
• Embedding wrappers to safely export/import values.

The listing below shows the translation of the TS? function Point to
JavaScript. The translated code is placed within a single enclosing
function to introduce a fresh local scope. Without this, TS? defi-
nitions would implicitly leak into the global un-typed object. The
type annotations in TS? are all erased in JavaScript.

1 function () {
2 var Point = function (x,y) {
3 var self = new Q();
4 self.set("rtti", (|{}|));
5 write(self , "x", x);
6 write(self , "y", y);
7 var tmp=function(d:number) {write(self , "x", d);}

Value v ::= x | true | false | λx:t.e | D v
Expr. e ::= v | { f = e} | e. f | e. f = e′ | e[e′] | e[e′] = e′′

| let x = e in e′ | e e′ | D e
| if e then e′ else e′′ | 〈q t〉e | 〈c t〉e

Query q ::= isTag | canTag | canWrap
Coercion c ::= setTag | wrap

Type t,u ::= bool | T | any | un | t→ u | { f̄ :ā t̄}
Access a ::= r | w
Sig. S ::= . | D:t→ T | S,S′
Env. Γ ::= . | x:t | Γ,Γ′

Figure 1. Formal syntax of TS?

8 Q.defineProperty(tmp , "rtti", (|number→ unit|));
9 write(self ,"setX", tmp);

10 return Q.setTag((|any|), (|point|))(self); }
11 Q.defineProperty(Point , "rtti", (|(any,any)→ point|));
12 var o = Point (0,0);
13 o.setX (17);
14 }()

Line 33, the source empty record {} is compiled to a new Q object.
Line 44, we set the rtti field of self to the translation of a source
empty record. Lines 55 and 66, we use the macro write to add two
properties to the self object. This macro (defined in §33) checks
that the RTTI of the assigned field (if any) is compatible with
RTTI of the assignee. In this case, since the rtti field of self

is just the empty record, it does not constrain the contents of
any of its fields—so, these assignments succeed, and the fields
are added to self. Line 77, we translate setX, and at line 88, we
tag it an rtti field recording its source type. We then add it to
self using write. Line 1010, the call to Q.setTag checks whether
self contains a valid representation of a source point. For this,
it examines the representation of the type (|point|); notices that
the type requires three fields, x, y, and setX; then checks if the
self object contains values in those three fields whose RTTI is
compatible with the request types, number, number, and number ->

unit, respetively. Once this check succeeds, setTag updates the rtti

field of self to (|point|). An invariant of our translation is that the
rtti field of every object evolves monotonically with respect to the
subtyping relation. That is, self.rtti was initially (|{}|) and evolves
to (|point|), where point <: {}. The RTTI of self may evolve further,
but it is guaranteed to always remain a subtype of point. Line 1111,
we add an rtti field to the Point. Finally, at lines 1212 and 1313 we see
the translation of a statically typed fragment of TS?. Pleasantly, the
translation there is just the identity.

As shown, the translated program does not interact with its con-
text at all. However, the programmer can choose to export certain
values to the context. For example, including the top-level decla-
ration val Point:(any,any)-> point in the source program instructs
the compiler to wrap and export Point to the context by inserting
the following code after Line 1313.

win.Point = Q.wrap((|(any,any)→ point|), (|un|))(Point);

3. Formalizing TS?

This section formalizes TS? by presenting its type system and type-
directed translation to JavaScript. We describe in detail our runtime
representation of types and the JavaScript implementations of Q

.wrap, Q.setTag and related functions that manipulate translated
terms and their types. We conclude this section with a detailed
comparison of TS? with prior gradual type systems.

3.1 Syntax
Figure 11 presents our source syntax. To aid in the readability of
the formalization, we employ compact, λ -calculus style notation,
writing for example λx:t.e instead of function (x:t){return e;}.

5 2013/7/15

Γ ` e : t s
Γ ` e : u s S ` u <: t

Γ ` e : t s
(T-SUB)

Γ ` x : Γ(x) x
(T-X)

Γ ` ē : t̄ s̄ { f̄ :ā t̄}= t]u S ` unFree(t)
Γ ` { f = e} : u record(f :s,u)

(T-REC)

S(D) = t→ T Γ ` e : t s
Γ ` D e : T data(D, s̄,T)

(T-D)
Γ,x:t ` e : t ′ s

Γ ` λx:t.e : t→ t ′ fun(x,e,s, t→ t ′)
(T-LAM)

Γ ` e : u]{ f :w t} s Γ ` e′ : t s′

Γ ` e. f = e′ : t s. f = s′
(T-WR)

Γ ` e:u]{ f :a t} s
Γ ` e. f : t s. f

(T-RD)
Γ ` e : t1→ t2 s Γ ` e′ : t1 s′

Γ ` e e′ : t2 s s′
(T-APP)

Γ ` e : u s Γ,x:u ` e′ : t s′

Γ ` let x = e in e′ : t (x = s,s′)
(T-LET)

Γ ` e : u s u ∈ {any,bool} ∀i.Γ ` ei : t si

Γ ` if e then e1 else e2 : t if asBool(u,s) then s1 else s2
(TA-IF)

Γ ` e : t ′ s t ′ ∼ t
Γ ` 〈q t〉e : bool Q.q((|t ′|),(|t|))(s)

(T-Q)
Γ ` e : t ′ s t ′ ∼ t

Γ ` 〈c t〉e : t Q.c((|t ′|),(|t|))(s)
(A-C)

∀i.Γ ` ei : any si

Γ ` e1 e2 : any apply(s1,s2)
(A-APP)

∀i.Γ ` ei : any si

Γ ` e1[e2] : any read(s1,s2)
(A-RD)

∀i.Γ ` ei : any si

Γ ` e1[e2] = e3 : any write(s1,s2,s3)
(A-WR)

S ` t <: t ′ S ` t <: t
S ` t <: t ′′ S ` t ′′ <: t ′

S ` t <: t ′
S ` t ′ <: t S ` u <: u′

S ` t→ u <: t ′→ u′
S ` t <: t ′

S ` { f :r t}]u <: { f :r t ′}]u
S ` unFree(t)
S ` t <: any

S ` unFree(t)
S ` t]u <: u

S ` unFree(t) S ` unFree(bool) S ` unFree(any)
∀D:t̄→ T ∈ S[T].S ` unFree(t̄)

S ` unFree(T)
∀i.S ` unFree(ti)

S ` unFree(t1→ t2)
S ` unFree(t̄)

S ` unFree({ f̄ :ā t̄})

t ∼ t ′ t ∼ t
t ′ ∼ t
t ∼ t ′ any∼ t un∼ t

t ∼ t ′ u∼ u′

t→ t ∼ t ′→ u′
fields(u0)∩fields(u1) = /0 ∀ j.a j = a′j ∧ t j ∼ t ′j

{ f̄ :ā t̄}]u0 ∼ { f̄ :ā
′
t̄ ′}]u1

where
let x = s in s′ , function(x){return s′;}(s)
record(f : s, t) = let x=new Q()in (x.set(f,s), x.set("rtti", (|t|)), x)

data(D,s,T) = let x=new Q()in (x.set(string(i), s), x.set("c", (|D|)), x.set("rtti", (|T |)), x)

fun(x,e,s, t→ t ′) = let f=function(x){var locals(e); return s;} in (Q.defineProperty(f, "rtti", {value:(|t→ t ′|)}), f)

asBool(u,s) = s i f u=bool and let b=s in (typeof(b)==="boolean"? b : Q.die()) otherwise
apply(s,s′) = let f=s in let x=s′ in typeof(x)==="function" ? f(Q.setTag((|any|), f.rtti.arg)(x)) : Q.die()

read(s1,s2) = let x =s1 in let f=s2 in typeof(x)==="object" && x.hasField(f) ? x[f] : Q.die()

write(s1,s2,s3) = let x=s1 in let f = s2 in let v=s3 in let t = typeof(x)==="object" ? x.rtti : Q.die() in

Q.mutable(t, f)? x.set(f, Q.setTag((|any|), t.hasField(f) ? t[f] : Q.Any)(v)) : Q.die()

(|any|) = Q.Any (|t→ t ′|) = Q.arrow((|t|), (|t ′|)) (|{ f :a t}|) = let r = Q.rec()in Q.addField("f", (|t|), a==="w", r)

(|un|) = Q.Un (|T |) = Q.data("T")

Figure 2. A type-directed translation of TS? to JavaScript

We also write e for a sequence of expressions e1, . . . ,en, f (e) for
the application f (e1, . . . ,en), and so on.

Values v include variables x, booleans, typed λ -abstractions,
and data constructors D applied to a sequence of values. For con-
ciseness, we exclude primitives like numbers and strings, since they
can in principle be encoded using data constructors. Of course, in
practice, our implementation supports JavaScript primitives, and so
we use them in our examples.

In addition to values, expressions e include record literals, pro-
jections of static fields, and assignments to static fields. We also in-
clude projections of computed fields e[e′] and assignment to com-
puted fields e[e′] = e′′. It is important to note that records, even
records of values, are not values; as in JavaScript evaluating a
record returns the heap location where the record value is stored.
We have let-bindings (corresponding to immutable var bindings in
our concrete syntax); function application; data constructor appli-
cation; and conditionals. Finally, we have RTTI-based query oper-
ations 〈q t〉e, and coercions 〈c t〉e.

Types t,u include a number of primitive types (bool for boolean
values, and any and un for dynamic values), abstract data types
ranged over by T , and records. Record types are written using the
shorthand { f̄ :ā t̄} to denote the type { f1 :a1 t1, . . . , fn :an tn} where
the fi are distinct and the ai are accessibility annotations: r for read-
only, and w for mutable. We also write t] u for the record type
{ f̄1 :ā1 t̄1, f̄2 :ā2 t̄2}, where t = { f̄1 :ā1 t̄1} and u = { f̄2 :ā2 t̄2}.

The type system is given with respect to a signature S which
maps data constructors D to their type signature, written t → T .
In places we need to refer to all the data constructors for a given
abstract data type T in the signature S. We use the shorthand S[T]
which is defined as {D : t → T | S(D) = t → T}. We also have a
standard type environment Γ binding variables to their types.

Although we have data constructors, pattern matching in TS?

is not primitive. Instead, it can be encoded in terms of the other
constructs, as defined below. Note, we freely use && and the other
boolean operators, as well as ==, structural equality on TS? values.

match e with Dt̄→T x → e1 else e2 ,
let y = e in if (〈isTag T 〉y && y.c == "D") then let x = y[i] in e1 else e2

3.2 Type system and translation

Figure 22 defines the judgment Γ ` e : t s, which states that in an
environment Γ (along with an implicit signature S), TS? expression
e can be given the type t and translated to the JavaScript program
s. We present the type system declaratively—making it algorithmic
in our implementation, given reasonable default type annotations,
is not hard. We plan to add more systematic bidirectional type
inference in the near future.

At a high level, the type system is designed to enforce the
following three properties mentioned in §22:

Static safety. TS? programs have no failing dynamic checks during
the execution of statically typed sub-terms. We achieve this via two

6 2013/7/15

mechanisms: (a) the rules prefixed by (T-) enforce the static typing
discipline and they never insert any runtime checks when compil-
ing the program; (b) when a value v:any is passed to a context that
expects a precise type, e.g. point, the compiler inserts instrumen-
tation to ensure that v is indeed at least a point. Instrumentation
inserted elsewhere in dynamic code also ensures that v henceforth
remains at least point. This protects the statically typed code from
future modifications to v. In the other direction, the type system
allows for v :point to be passed to any-typed context via subtyping.

Dynamic safety. The RTTI of v:t is always a subtype of t and
a sound approximation of v’s most precise type—by two mecha-
nisms: (a) v’s RTTI initially reflects t and the setTag operation en-
sures that RTTI always evolves towards the more precise types per
subtyping, and (b) the rules prefixed by (A-) instrument the transla-
tion of the any-typed parts of the source to enforce that modifica-
tions to v respect its RTTI. (We envision that an IDE can highlight
uses of (A-) rules to the programmer as potential failure points.)

Memory isolation. un-typed code cannot directly access an object
reference that TS? code may dereference, enforced by ensuring that
programs treat the un type abstractly. The only way to manipulate
un values is via defensive wrappers, which means that typed code
never dereferences an un-typed memory location, and that any-
typed references can never be handed directly to the adversary. The
subtyping rules are designed to prevent masking the presence of
un-values in records using width-subtyping or subtyping to any.

We now turn to describing each of the rules in detail. The first
rule in the judgment, (T-SUB), is a subsumption form which shows
that a use of subtyping in TS? does not change the translation of
a term. The subtyping relation S ` t <: t ′ (also in Figure 22) is
mostly standard. Depth subtyping on records is permitted only for
immutable fields. The last but one rule allows all types that do not
contain the un type to be a subtype of any. (The auxiliary predicate
unFree detects occurrences of un in a type.) Allowing un <: any

would clearly break our invariants. Allowing {f:un} <: any is also
problematic, since if a value v:{f:un} could be promoted to v:any,
then v["f"] would also have type any, even though it produces an
untrusted value. The last subtyping rule provides width-subtyping
on records, forgetting the fields to weaken t] u to u, only so long
as t contains no occurrences of un.

The rule (T-X) for typing variables is standard. (T-REC) introduces
a record at type u, such that u includes all the un-fields (necessary
for compatibility with subtyping). Its compilation allocates a new
Q object, safely sets the fields f̄ to s̄, and finally adds an rtti

field containing (|u|). The rule (T-D) for typing data constructors is
similar. The typing of functions with (T-LAM) is standard; however,
the translation to JavaScript is a bit subtle: it defines a JavaScript
function tagged with an rtti field, whose body s is preceded by
declarations of all the let-bound variables in e, the source function
body. These (and other) rules use the JavaScript form (e), which
evaluates every ei in e and returns the last one.

The rules (T-WR), (T-RD), (T-APP), (TA-IF), and (T-LET) are
standard. One slight wrinkle in (TA-IF) is that in case the guard has
static type any, we insert a check to ensure that it is a boolean at
runtime—we could have split the rule into two.

The rules (T-Q) and (A-Q) cover the RTTI-based query 〈q t〉e,
and coercion 〈c t〉e. In each case, we have an expression e : t ′
compiled to s, and we apply q or c at type t, so long as t and t ′ are
compatible. Type compatibility is a simple reflexive, symmetric,
and non-transitive relation, similar to Siek and TahaSiek and Taha (20062006).

Reflecting on RTTI The form 〈isTag t〉e is compiled to Q.isTag(

(|t ′|),(|t|))(s), implemented in boot.js. It checks whether the RTTI of
s exists and if it is a subtype of t, returning a boolean. Q.canTag((|t ′|),
(|t|))(s) checks whether the least runtime type of s is a subtype of t.
If either t or t ′ is un, canTag returns false. For records and datatypes,

canTag recursively examines the contents of s, and checks the RTTI
of functions, which must be present on every non-un function. If Q.
canTag((|t ′|),(|t|))(s) succeeds, Q.setTag((|t ′|),(|t|))(s) also succeeds and
returns s after mutating its RTTI (recursively) to be at least t. On a
failure, Q.setTag((|t ′|),(|t|))(s) terminates the execution.

Securely importing from un The operator 〈wrap any〉e imports
e:un, compiling to Q.wrap((|un|),(|any|))(s). It begins by determining
s’s simple type using JavaScript’s typeof. If s is a string, it uses the
Fournet et al.’s upstring; other primitive types are similar. If s is an
object, wrap creates a new Q object x, enumerates all the fields f of
s and adds them to x after recursively wrapping the field value to
any. If s is a function, wrap applies Fournet et al.’s upfun to safely
import a function at the type any -> any. To a first approxima-
tion, this places a higher-order wrapper around s of the following
form: function (x){ return Q.wrap((|un|),(|any|))(s(Q.wrap((|any|),(|un|))
(x))); }. In reality, upfun is more complex, since it ensures memory
isolation in the presence of stack walks using JavaScript’s argument

.callee.caller. The general case, when t 6= any, is similar.

Securely exporting to un The implementation of Q.wrap((|t|),(|un|)
)(s) for t 6= un, exports s to the context. Since s is a TS? value,
wrap inspects its RTTI. If s is a primitive, it uses one of Fournet
et al.’s wrappers, e.g., downstring. If s is an object, wrap creates an
empty object literal x, enumerates all the fields f of s, exports them
recursively and adds them to x. For functions, it uses Fournet et.
al.’s downfun to export it at type Un -> Un.

TS? allows wrapping between non-un types as well, e.g. from
type t -> u to type t’ -> u’. Such wrappers can be used when RTTI
operations seem too strict. For example, setTag on a function f with
RTTI any -> any at type bool -> bool would fail, since any -> any

6<: bool -> bool. However, a wrapper from any -> any to bool ->

bool succeeds by placing a higher-order wrapper around f .

Instrumenting any-typed code The remaining (A-) rules instru-
ment the translated programs to ensure safety. In (A-APP), we first
check that s is a function. Then, before calling the function, we tag
the argument with the type of the function’s parameter. (A-RD) sim-
ply checks that s1 is an object and that s1 has field s2. (A-WR) checks
that s1 is an object. It then checks that s1’s RTTI allows for field
s2 to be written. If s1’s RTTI does not contain s2, it is treated as a
new property addition—deleting a property if it is not present in the
RTTI is also straightforward, although we do not cover it here. Oth-
erwise, it should contain a mutable s2 field, and before writing, s3 is
tagged with the type expected by s1’s RTTI. In all cases, failed run-
time checks call Q.die, which exhausts the JavaScript stack (since it
does not optimize tail calls). This is drastic but effective; friendlier
failure modes are feasible too.

3.3 Discussion and related work on gradual typing

Languages that mix static and dynamic types go back at least
to Abadi et al.Abadi et al. (19911991) and Bracha and GriswoldBracha and Griswold (19931993). Gradual
typing is a technique first proposed by Siek and TahaSiek and Taha (20062006), ini-
tially for a functional language with references, and subsequently
for languages with various other features including objects. Several
others have worked in this space. For example, FlanaganFlanagan (20062006)
introduces hybrid typing, mixing static, dynamic and refinement
types; Wadler and FindlerWadler and Findler (20092009) add blame tracking to a grad-
ual type system; Herman et al.Herman et al. (20102010) present gradual typing with
space-efficient wrappers; Bierman et al.Bierman et al. (20102010) describe type dy-
namic in C]; and Ina and IgarashiIna and Igarashi (20112011) add gradual typing to
generic Java.

Our system is distinct from all others in that it is the first to
consider gradual typing for a language embedded within a larger,
potentially adversarial environment via the type un. We are also, to
the best of our knowledge, the first to consider gradual types as a
means of achieving security.

7 2013/7/15

To compare more closely with other systems, set aside un for the
moment, and focus on the interaction between any and statically
typed TS?. Previous type systems mediate the interactions between
static- and any-typed code by implicitly attaching casts to values.
Higher order casts may fail at a program point far from the point
where it was inserted. To account for such failures, blame calculi
identify the cast (with a label to indicate the term or context) that
causes the failure—Siek et al.Siek et al. (20092009) survey blame calculi based
on the errors they detect, points of failures, and casts they blame

Interactions between static- and any-typed TS?, in contrast, is
based primarily on RTTI. Casts (wrappers in our terminology) are
never inserted implicitly, although they may be inserted explicitly
by the compiler. This design has the following advantages.
Preservation of object identity. Object identity in JavaScript is a
commonly used feature. Since TS? does not implicitly attach casts
to values, it never implicitly breaks object identity in the source
during compilation. Previous gradual type systems, with implicit
casts, would always break object identity.
Space efficiency. Casts can pile up around a value, making the
program inefficient. Herman et al.Herman et al. (20102010) introduce a novel cast-
reduction semantics to gain space-efficiency. TS?’s RTTI is also
space efficient (there’s only one RTTI per object), but does not
require cast-reduction machinery.
Runtime reflection. JavsScript provides a coarse reflection mech-
anism using its typeof operator. RTTI tags in TS? enrich runtime re-
flection by allowing programmers to inspect types more precisely.
Static safety and eager failures. In contrast to our RTTI-based
mechanism, statically typed code in other gradual type systems
could fail (although blame would help them ascribe it to the any-
typed code). Consider the following TS? example.

(λ r:{f:w int}. r.f) {f:true}

Compiling this term using (A-APP) introduces a setTag on the argu-
ment at type {f:wint}. The setTag operation, at runtime, recursively
checks that v is indeed {f:wint}, and expectedly fails. Thus, the fail-
ure happens prior to the application, a failure strategy called eager
in prior works. Herman et al.Herman et al. (20102010) also argue that their system
can provide eager failures, but transposed to their notation (with the
record replaced by a ref any), the failure occurs at the property read
within the statically typed λ -term, breaking static safety. When ea-
ger runtime checking seems too strict, TS? wrappers provide an
escape hatch. Arguably, for our security applications, a predictably
uniform eager-failure strategy is a suitable default.

In their calculus the example would be:

let x:Ref int -> int = (λ r:Ref int. !r) in
let v:any = true in let l:Ref any = ref v in
x l

In their calculus, the application x l just inserts a coercion from
Ref any to Ref int, that succeeds, even in the eager semantics. The
failure happens inside the λ , which is a statically typed fragtment,
when r is dereferenced. Thus, violation of static safety property.

We plan to pursue providing eager semantics even for wrappers
as future work.

For wrapping between non-un types, we can use refinements in
RTTI to provide more precise type checking. For wrapping from un
types, we can provide a safe eval, compiled with TS?, that imports
un-typed values with eager failure semantics.
Dynamic safety and blame. With no failures inside statically
typed code to explain at runtime, our RTTI-based scheme may
seem to obviate the need for blame. However, because we enforce
dynamic safety (RTTI evolves monotonically), failures may now
arise in any-typed code, as in the following example.

let v:any={f:2} in (λ r:{f:w int}. r.f) v; v.f = "hi"

This time, the setTag of v to {f:wint} succeeds, and it modifies
v’s RTTI to be {f:wint}. But now, the update of v.f to "hi" fails.
This failure in the any-typed fragment should be blamed on the
setTag operation instrumented at the application. We plan to pursue
the details of this seemingly new notion of blame as future work.

4. Metatheory of the translation
This section formally establishes memory isolation, static safety,
and dynamic safety for TS? programs translated to JavaScript.
Clearly, such a proof requires a formal semantics for JavaScript—
we rely on JS?, a translation semantics for JavaScript developed
by Swamy et al.Swamy et al. (20132013), which is in turn based on λ JS (Guha et al.Guha et al.
20102010). We provide a brief review of JS?, define the central in-
variants of our translation, and describe our main theorem. A full
development of the formalism, including all proofs, is available in
the supplementary material.

4.1 A review of JS? and the high-level proof strategy
JS? is a subset of F? (Swamy et al.Swamy et al. 20112011), a dependently program-
ming language whose type system allows expressing functional-
correctness properties of higher-order programs, whose effects
may include non-termination, higher-order state, exceptions, and
fatal errors. These features enable it to describe the features of
JavaScript, and Swamy et al. provide a tool called JS2JS? to
translate JavaScript concrete syntax to JS?. The JS? semantics for
JavaScript has been used previously both as a means of verify-
ing JavaScript source programs (after translation to JS?) as well as
in Fournet et al.’s proof of full abstraction from f? to JavaScript.
At its core, JS? provides a mechanically verified library called
JSVerify that tries to faithfully model most security-relevant details
of JavaScript, including, for example, its object model and calling
convention. The metatheory of TS? is stated in terms of its trans-
lation to JS?, i.e., programs that can be type-checked against the
JSVerify API. The validity of our theorem depends on JS? being a
faithful model of JavaScript, an assumption that can be checked
separately, e.g., by semantics testing.

To set up the formal machinery, we develop a model of our
compiler by transposing the translation judgment in Figure 22 to
instead generate JS? code (see supplementary material). The re-
lationship among these translations is depicted alongside. The
translation from TS? to JS? can be
seen as the composition of the trans-
lation from TS? to JavaScript, and
then from JavaScript to JS?. Our
main theorem is stated as a type-
preservation result from TS? to JS?,
where the types in JS? are precise
enough to capture our desired invariants, i.e., static safety, dynamic
safety, and memory isolation.
Monadic computation types with heap invariants. All computa-
tions in js? are typed in a state monad of predicate transformers,
iDST, which is parameterized by a heap-invariant predicate HeapInv
and a heap-evolution predicate δ . The type iDST a WP is the type
of a computation, which for any post-condition post, when run in
an initial heap h, may diverge or else produce a result v:a and a fi-
nal heap h′ that satisfy the formula post v h′∧ HeapInv h′ ∧ δ h h′, so
long as HeapInv h ∧WP post h is valid. Additionally, all intermedi-
ate heaps in the computaion satisfy HeapInv, and every intermediate
heap is related to all its successors by δ . That is, in iDST a WP, a is
the result type, and WP is a predicate transformer that computes a
pre-condition for the computation with respect to post, any desired
post-condition; HeapInv is an invariant on a heap, and δ is a reflex-
ive and transitive relation constraining how the heap evolves. For-
mally, the types and our theorem also account for exceptions and
fatal errors; however, we gloss over them here for lack of space.

8 2013/7/15

The main idea behind our proof is that a TS? term e:t is trans-
lated to a JS? term e′ of type iDST dyn WP[[t]], where

WP[[t]] = Λpost.λh. Ok (loc(e)) h ∧ ∀v h′. [[t]] v h′ =⇒ post r h′

This ensures that if e′ is run in an initial heap h satisfying HeapInv h
and Ok (loc(e)) h (meaning that all free-variables of the source-term
e are correctly promoted to the heap in JS?); then, it will either
(1) terminate with a result v and a final heap h′ satisfying [[t]] v h′;
or (2) it will diverge or raise an exception. All the while during
the execution of e′, HeapInv will be true, and the heap will evolve
according to δ . This result holds even when e′ is linked with
arbitrary JavaScript code—adapting the universal typability lemma
of Fournet et al.Fournet et al. (20132013), JavaScript code can always be typed in JS?

at a type corresponding to un.
Our main task then is to carefully define HeapInv, δ and [[t]]

such that they capture our desired invariants, and then to prove that
translated programs are well-typed in JS?.

4.2 Invariants of the translation

To prove memory isolation, JS? provides a partitioned heap model.
Every object reference l:loc carries a tag, l.tag, which records the
name of the compartment into which the reference points, i.e., each
compartment is a disjoint fragment of the domain of the heap.
There are six compartments in the heap model. The Ref compart-
ment holds objects corresponding to TS? records, datatypes, and
RTTI; the Abs compartment holds function objects; the Q compart-
ment holds the base prototype object initialized and then frozen
by boot.js; and the Un compartment belongs to the adversary.
We focus primarily on properties of these first four compartments.
The remaining two compartments, Inv and Stub, are inherited un-
changed from Fournet et al.Fournet et al. (20132013)—the former is for maintaining
local variables, and the latter for tracking function objects used to
make safe callbacks to the attacker.

Refined type dynamic. All JavaScript values (including the trans-
lation of TS?) are represented as JS? values of type dyn, defined be-
low. We show only three representative cases. d=Str s is an injection
of s:string into type dyn, where the refinement TypeOf d=string recalls
the static type. For object references Obj (l:loc), the refinement is
l’s tag, i.e., {Ref, Abs, Un, Q}. Finally, for functions, Fun o f builds a
value of type dyn from a function closure f and the JavaScript object
o for that closure. Its refinement is the predicate transformer of f.

type dyn = . . .
| Str: string→d:dyn{TypeOf d=string}
| Obj: l:loc→d:dyn{TypeOf d=l.tag}
| Fun: ∀WP. o:dyn→ (this:dyn→args:dyn→ iDST dyn (WP o args this))
→d:dyn{TypeOf d=WP}

Translation of types. To recover the precision of TS? types in JS?,
we translate source types to predicates on dyn-typed values and the
heap: [[t]] d h states that the value d:dyn is the translation of a source
value of type t in the heap h. The translation of a type is with respect
to a heap, since a source value allocated at the type { f :a number},
may evolve to become a value of type { f :a number,g :a number}
in some subsequent heap. This is in contrast to, and a significant
generalization of, the translation of f? to JS?, where a value’s type
does not evolve and is not suject to subtyping.

[[string]] d h = TypeOf d=string
[[un]] d h = IsUn d
[[t]] d h = ∃u <: t. Tagged u d h if t 6∈ {string, un}
Tagged u d h = "rtti"∈ dom h[d] ∧ Rep u (h[d]["rtti"]) h ∧ Is u d h

Is any d h = Prim d ∨ Fun is d ∨ (TypeOf d=Ref ∧ restAny {} d h)
Is T d h = TypeOf d=Ref ∧

∨
Dt̄→T

h[d]["c"]=Str "D"
∧ ∧i [[ti]] (h[d][i]) h ∧ restAny {1..n} d h

Is { f̄ :ā t̄} d h = TypeOf d=Ref ∧ f̄ ⊆ dom h[d]
∧ [[t̄]] h[d][f̄] h ∧ restAny f̄ d h

Is (t1→ t2) d h = TypeOf d = λo args this.Λp.λh.
[[t1]] h[args]["0"] h ∧ ∀r h′. [[t2]] r h′ =⇒ p r h′

restAny fs d h = ∀f∈dom(h[d])\fs. ¬Reserved f =⇒ [[any]] h[d][f] h

Since strings are immutable [[string]] d h does not depend on h.
Likewise, an un-typed value always remains un-typed—we define
IsUn shortly. For other types, [[t]] d h captures the subtyping re-
lation, stating that there exists a type u <: t such that the value’s
rtti is tagged with the runtime representation of u (the predicate
Rep u (h[d]["rtti"]) h), and Is u d h, i.e., the value d can be typed at
u in h. Is any d h states that d is either a primitive (e.g., a string),
a function, or a location in the Ref heap where all its non-reserved
fields (excluding, e.g, "rtti") are typeable at any (restAny). For
datatypes and records, we require d to be a location in the Ref heap,
with the fields typed as expected, and with all other fields not men-
tioned in the type being any. The case for functions is most inter-
esting. Is (t1→ t2) d h states that the d’s predicate transformer builds
a pre-condition that requires the first argument to satisfy [[t1]] (all
JavaScript functions are variable arity, receiving their arguments in
an array; however a TS? function will only read the first one). In
return, the predicate transformer ensures that the result r (if any)
will satisfy [[t2]]. As mentioned earlier, we have elided our formal
treatment of exceptions.

Un values. The predicate IsUn v defines when the value v could
have been produced by, can be given to, or is accessible by the
context. Un values include primitives; references to objects in the
Un heap; or the immutable Q object (which is reachable from
the global object). Additionaly, Un values can be functions whose
specification indicates that it takes Un arguments to Un results.

IsUn x , TypeOf x ∈ {bool, string, float, Un, Q} ∨ TypeOf x=Un2Un
Un2Un , λo args this post h. IsUn o ∧ IsUn this ∧ IsUn args
∧ (∀ r h′. IsUn r =⇒ post r h′)

HeapInv, the global heap invariant. Our main heap invariant is a
property of every location x in the heap. Its full definition contains
seven clauses; we show the most important ones.
HeapInv h , ∀x. x ∈ dom h =⇒

(1) (x.tag=Un =⇒ ∀x ∈ dom h[x]. IsUn h[x])
(2) ∧ (x.tag∈{Ref,Abs} ∧ "rtti"∈dom h[x] =⇒ ∃t. Tagged t d h)
(3) ∧ (x.tag=Ref =⇒ IsQ h[x])
(4) ∧ (x.tag=Q =⇒ QSpec h[x] h)

IsQ o h , TypeOf o["@proto"]=Q ∧ "fields" ∈ dom o
∧ ∀f ∈ AsSet o["fields"] h. f ∈ dom o
∧ ∀f ∈ dom o. Reserved f ∨ f ∈ AsSet (o["fields"]) h

Clause (1) asserts that all the contents of an Un object are also
Un. Clause (2) asserts that every object in the Ref and Abs com-
partment with an "rtti" field is tagged properly. Clause (3) addi-
tionally specifies that every object in the Ref heap is an instance of
Q. The predicate IsQ o h on an object establishes that o’s prototype
points to the heap compartment, Q; and that it contains a "fields"

property that accurately models all the fields in the object—useful
for testing the existence of and enumerating properties. Clause (4)
asserts that the object in the Q compartment has a specification de-
scribed by QSpec, which gives a type to each of its fields.

9 2013/7/15

Within this invariant are two key properties of TS?. The first
clause guarantees that the only values reachable from a location in
the Un heap are themselves un-values. Therein lies our memory iso-
lation property—the adversary can never meddle with TS? objects
directly, since these reside in the Ref and Abs heap, which are dis-
joint from Un. The invariant, in its second clause, also captures dy-
namic safety, i.e., every object in the Ref and Abs heap, once tagged
with RTTI are properly typed according to it.

δ , the heap evolution invariant. The full definition of δ has 4
clauses; we show the main one below: δ ensures that, for all
objects in the Ref and Abs heaps, their "rtti" fields only evolve
“downward” in the subtyping hierarchy.

δ h0 h1 , ∀l ∈ dom h0, t0, t1.
l.tag ∈ {Ref,Abs} ∧ Rep t0 h0[l]["rtti"] h0 ∧ Rep t1 h1[l]["rtti"] h1
=⇒ t1 <: t0

A relatively easy lemma derivable from these definitions implies
our static safety property. In particular, Lemma 99 guarantees that
if a value v (potentially a location to a heap-resident record) is
typeable at type t in some initial heap h0 then as the program’s
heap evolves according to δ , v remains typeable at t. This ensures
that it is safe for TS? to ascribe a value a static type, since that type
is an invariant of the value at runtime.

Lemma 1 (Static safety: δ preserves the interpretation of types).
For all values v, heaps h0 and h1 such that HeapInv h0, HeapInv h1
and δ h0 h1, if for some t we have [[t]] v h0 then [[t]] v h1

Finally, our main theorem, as promised, is a type preservation
result that guarantees memory isolation, dynamic safety and static
safety for TS? programs translated to JS?. The relation Γ f̀ e : t
e′ is the formal translation of TS? to JS? (the index f is the name of
the current function object in e′; a technical detail).

Theorem 1 (Type preservation).
Given a TS? context Γ, expression e and type t,
if Γ f̀ e : t e′ for some JS? expression e′ and function object f ,
then [[Γ]], f :dyn,Γloc(e) ` e′ : iDST dyn WP[[t]]

We conclude our formal development with a few remarks on
the scope of our theorem and the style of its proof. First, our result
is applicable to the translation of TS? to JavaScript only inasmuch
that JS? is an accurate model of all of JavaScript—Fournet et al.Fournet et al.
(20132013) argue for how JS? is an adequate model of all security-
relevant features of JavaScript. Regardless, the availability of these
semantics together with its program logic is what made our proof
feasible. Given an operational semantics, but lacking a program
logic, our proof would have been mired in tedious inductions over
the operational semantics. With JS?, we were able to carry out our
proof as an induction over the compilation relation, and use the type
system of JS? to structure and prove our invariants, which is what
renders the result tractable.

Second, our result includes within its trusted computing base
the correspondence of boot.js to the QSpec specification in the
last clause of HeapInv. While it is perhaps standard for compiler and
verification projects to rely on a small amount of trusted code, we
would like to do better. In particular, we aim to use the JavaScript
verification toolchain developed by Swamy et al.Swamy et al. (20132013) to verify
boot.js for compliance with QSpec—at the time of writing, this
was still incomplete. More substantially, we would also like to build
a translation validation pipeline for our compiler implementation,
reflecting the generated JavaScript back into JS? for verification,
i.e., we would like for our compiler implementation to also be
formally type-preserving.

5. The TS? compiler and its safe deployment
We have built a prototype compiler from TS? to JavaScript and
used it to compile all our examples. The compiler consists of
several phases, reusing some infrastructure provided by the F?

compiler. It first translates source programs in concrete TS? syntax
to F?, using a variant of the DJS parser (Bhargavan et al.Bhargavan et al. 20132013).
The second phase is a type-directed F? to JavaScript translation
(an algorithmic adaptation of Figure 22), which reuses parts of the
JavaScript backend of F?. We wrote afresh or modified 800 line of
OCaml and 1,800 lines of F#.

We evaluated our compiler by gradually migrating JavaScript
sources to TS?, while ensuring that the migrated code (after com-
pilation) exports the same API as the original. The compiled
JavaScript code for our examples is about 4X as big as the origi-
nal TS? programs—we can reduce most of the code size overhead
by removing the A-normal form our compiler emits. We have yet
to conduct a thorough performance analysis of our compiler, nor
have we implemented any optimizations. But, as mentioned pre-
viously, statically typed TS? should incur little, if any, runtime
overhead. Understanding and optimizing the performance profile
of any-typed code is left as future work.

The table below lists our examples and compares the code size
of the generated JavaScript programs with those of the source TS?

programs. We have discussed all examples previously, except for
Csrf-whitelist which implements CSRFGuard using a white list of
URLs. Columns “TS? LOC” and “JS LOC” are lines of code in TS?

and JavaScript respectively.

Bench TS? LOC JS LOC
Point 27 200
QueryString 65 269
CrossDomainMsg 91 427
Csrf 77 334
Csrf-whitelist 85 423
FB-API 39 191

In the remainder of this section, we describe how TS? programs
are securely deployed on web pages.

5.1 Securely bootstrapping the TS? runtime
The guarantees of TS? depend on boot.js being the first script to
run on a web page. Many prior works have implicitly assumed that
scripts are always executed in the order in which they appear on the
page (Jim et al.Jim et al. 20072007; Magazinius et al.Magazinius et al. 20102010; Taly et al.Taly et al. 20112011), but,
as we explain, this is a naı̈ve view. Instead, we develop a standards-
based mechanism that ensures that our scripts run first.

We show how to deploy our scripts safely on any website (W.com
). First, we describe a novel construction that can ensure that a given
script executes first on a page. Second, we describe a technique
for loading scripts that contain embedded secrets in a way that
protects them from malicious websites. Finally, we present some
interoperability and performance results for our examples.

In §2.32.3, we propose to load a script boot.js first on a page so
that it can keep clean copies of various primitives that we rely on.
More generally, we may want to load a series of first-starter scripts
that provide reliable copies of useful libraries, such as JSON and
XMLHttpRequest, for use by subsequent code.

Suppose a script s is lexically the first element in the header of
a page located at a URL U = http://W.com/page.html, one may ex-
pect that it will be guaranteed to run first on any window loaded
from U. However, this intuition is correct only if the page has
not been loaded programmatically from JavaScript by another web
page, e.g., within another frame. On a page loaded initially from
U, the script s will indeed run first. Still, a malicious script run-
ning later on the page or on a different page with the same ori-

10 2013/7/15

gin http://W.com may open a window or frame at U, and modify
all the essential primitives before s begins to run inside the new
window frame. This execution order is consistent with the HTML
standard (Berjon et al.Berjon et al.) and we have confirmed it experimentally on
all mainstream browsers.

Hence, any naı̈ve first-starter implementation that relies on lex-
ical ordering of script elements will fail if other scripts on the
same origin are allowed to open windows or frames. Indeed, the
web browser only provides security guarantees at the granularity of
an origin (BarthBarth 20112011); finer-grained privilege separation between
good and bad scripts within the same origin require application-
level mechanisms, such as restricting all untrusted scripts to a sub-
language like SESlight (Taly et al.Taly et al. 20112011); loading them in sand-
boxed iframes with few privileges (Akhawe et al.Akhawe et al. 20122012); or mod-
ifying the browser to allow the first-starter script to certify all other
scripts running on the page (Jim et al.Jim et al. 20072007).

Rather than restrict the functionality of untrusted scripts, we
propose a standards-based mechanism that ensures that our scripts
run first. For a given website, we use two distinct origins:

• http://W.com, which is used primarily as service origin; it does
not serve any resource.
• http://start.W.com, serves HTML pages, including scripts com-

piled from TS?, but where the first two <script> elements on the
page are the following:

<script src="http://start.W.com/boot.js"></script>
<script>document.domain = "W.com"</script>

The first-starter scripts could also be inlined on the page. This
server may also handle any other requests (such as XML-
HttpRequests), but must not serve any HTML page which does
not have the above structure.
Our implementation also captures more general patterns. For
instance, we allow arbitrary HTML pages on W.com but treat
them as untrusted.

The crucial step here is that after boot.js has loaded, the page
sets document.domain to the parent domain W.com. This is a standards-
based mechanism (Berjon et al.Berjon et al., 5.3.1) by which the page voluntar-
ily gives up its rights to the http://start.W.com/ origin for client-
side same-origin access across frames and windows. Instead, it
adopts an effective script origin of http://W.com.

All subsequent scripts on the page are unrestricted except that
they can only read or write into frames or windows that have
an effective script origin of http://W.com, and hence they cannot
tamper with pages on http://start.W.com, even if such pages are
loaded programmatically into other frames or windows. In all other
ways, their functionality is unimpeded and requires no expensive
translations or messaging protocols, unlike previous approaches.

More generally, by placing other trusted scripts after boot.js

and before the assignment to document.domain, we can run scripts
that grab reliable copies of builtin libraries, such as JSON and
XMLHttpRequest, for use by subsequent code. Furthermore, we add
additional protections against network errors and adversaries.

5.2 Loading scripts with embedded secrets
Our first-starter protocol reliably allows boot.js to build a trustwor-
thy environment for our compiled scripts. Conversely, we some-
times need a way for scripts to be able to verify that their environ-
ment is trustworthy. This is particularly important when compiled
scripts contain secret tokens embedded within them, e.g., to authen-
ticate themselves to other servers. Embedding secrets as constants
within program text may seem like an elementary mistake, but this
is the predominant way of distributing these tokens in a JavaScript
setting. Secrets within scripts must first be protected from mali-
cious websites that may try to load our scripts, and second from

malicious scripts on our own website W.com. In this threat model,
many simple countermeasures one may think of are inadequate.

Even if we require a login cookie for authentication before serv-
ing the script, a malicious website that an innocent user visits when
logged into W.com can make a cross-site script request and obtain
the script (an attack sometimes called JavaScript hijacking.) If we
inline the scripts into our page, malicious scripts can read their
source code and obtain the token. Even if they are not inlined but
served from http://start.W.com, malicious scripts can perform an
XMLHttpRequest to obtain their source code and then read them. In-
deed, these are all methods commonly used by cross-site scripting
(XSS) attacks (e.g., the Samy worm) to break token-based security
protections on the web.

To protect our scripts from same-origin attackers, we use a third
distinct origin to serve our scripts:

• https://src.W.com, the secure source server, only serves GET
requests for scripts that may embed secret tokens to be shared
between the server and the script. It has a separate origin, with
CORS disabled, so the same-origin policy forbids XHR to this
server, and it returns scripts with content-type text/javascript,
so browsers either run it or ignore it, but never leak its source
to other origins. (This is another well-established same-origin
assumption.)

To protect our scripts against other websites, we need an ad-
ditional check Every script served from src.W.com is prefixed by a
condition on the current webpage location, that is, before making
any use of its secret token, the script checks that window.location

.href begins with http://start.W.com/ For example, the compiled
csrf.js served from this server has the form:
if (window.location.href === "http://start.W.com/") {
(function(){
var csrfToken = "XYZ..."; /* Session-specific Token */
var targetOrigin = "start.W.com";
function authRPC(...){...}
Q.defineProperty(win,"authRPC",
Q.wrap((|(string,string,string)→ string|), (|un|))(authRPC));

})();
}

More generally, we can modify the conditional to allow pages
of the form http://start.W.com/*. This ensures that the script has a
reliable Q object on that page, introduced by boot.js.

Experimentally, we found that checking the current location of
a script is quite error-prone. Some scripts try to read document.

domain (see e.g., OWASP CSRFGuard in 6.16.1) or document.location,
others rely on window.location.href but then use regular expression
or string matching to check it against a target origin. All these
techniques lead to attacks because a malicious website could have
tampered with its document object or with the regular expression
libraries. We found and reported such attacks to vendors.

Notably, many browsers allow document.domain and window.

location.origin to be overwritten. Our origin check relies on the
window.location.href object which is specified as unforgeable in
the HTML specification (Berjon et al.Berjon et al., 5.2). In practice, however,
we found that some browsers incorrectly allow even supposedly
unforgeable objects like window.document and window.location to be
shadowed. We have reported these bugs to various browsers and are
in discussions about fixes. If the unforgeability of window.location.

href turns out to be too strong an assumption, we advocate the use
of the origin authentication protocol from Bhargavan et al.Bhargavan et al. (20132013).

6. Secure web programming with TS?

Modern web applications rely heavily on AJAX for responsiveness,
so that data can be retrieved on-demand. Hence, major websites
such as Google and Facebook provide rich client-side JavaScript
APIs, both for their own pages and for third-party websites, which

11 2013/7/15

can be called by scripts to programmatically access user data.
Controlling access to user data relies on combinations of cookies,
tokens, and credentials to authenticate the user and the page origin.

We illustrate TS?on such existing access control patterns, as
deployed in popular JavaScript APIs. We focus on client-sided,
language-based security, relegating most other details to the online
materials (notably a description of same-origin policies, protocol-
and browser specific security assumptions, and current attacks
against them; see also e.g., Bhargavan et al.Bhargavan et al. 20132013).

6.1 OWASP CSRFGuard

We first consider the task of securing client code that performs the
XMLHttpRequest to the page’s server.

Cross-Site Request Forgeries (CSRF). Suppose a website W has
an API available to JavaScript. Authenticating and authorizing ac-
cess using cookies ensures that only requests from a logged-in
user’s browser are accepted. Conversely, if the user has any another
websites open in her browser, their scripts also get access to the
API, and can thus steal or tamper with the user’s data on W. Such
request forgery attacks are persistently listed in OWASP Top 10
vulnerabilities, and have a serious impact on a variety of websites.

CSRF Tokens. As a countermeasure to CSRF, a website W can
inject a fresh, session-specific, random token into every page it
serves, and only accept requests that include this token. Other
websites cannot see W’s pages (thanks to the same origin policy)
hence cannot forge requests. Additionally, cookies and tokens can
be protected while in transit by using the HTTPS protocol. CSRF
protections typically focus on forms embedded in pages, but do
not protect dynamic AJAX or XMLHttpRequest. (Until recently, it
was commonly, and incorrectly, believed that AJAX calls are not
vulnerable to CSRF due to a special header, but this protection
proved fragile and easily bypassed.)

OWASP CSRFGuard 3 is the most widely-referenced CSRF
protection library. As an advanced feature, it provides a token-
injection script that transparently protects AJAX calls by intercept-
ing any XMLHttpRequest. (Similar protections exist for frameworks
like Django and Ruby-On-Rails.) Crucially, the token must be kept
secret from other websites, and also from other scripts loaded on
the page; otherwise those scripts may use it to directly perform ar-
bitrary requests, or leak it to some other website.

The token injection script contains an embedded CSRF token,
which it must protect from other websites, while including it in
requests to W. To do this it has to address three challenges: (1) It
should not be possible to load and execute the script on an untrusted
website; (2) Even on W, the script should not inject tokens on
requests meant for third-party websites; (3) It needs direct access to
the XmlHttpRequest object so that it can wrap and protect all uses
of this object.

The token injection script is meant to transparently protect an
arbitrary website, so does not make any assumption about how
the website is written, i.e., the website is Un. However, all CSRF
protections explicitly assume the absence of malicious scripts, and
do not provide any guarantees against (say) XSS attacks. I.e. they
assume the website cannot be Un. Can we do better? (Indeed, one
of the first tasks of a typical XSS attack is to steal the CSRF token.
The most popular example of such an attack is the MySpace samy
worm, which propagates by stealing CSRF tokens.)

Attacks. The original, unwrapped version of their code relies on
window.location, String.startsWith, and XMLHttpRequest, which can
be tampered with by a malicious script. We found several such at-
tacks where a malicious website could load the OWASP CSRF-
Guard script, forge the location, and trick it into releasing the token;
we are in discussion with the author towards more robust designs,
such as the TS?one proposed here.

CSRFGuard in TS?. Following the approach of §22, we migrate to
TS? the OWASP proxy that uses the token to provide authentication
RPCs to the rest of the library. This small script is typed in TS?,
guaranteeing that no malicious script that runs alongside (including
the rest of the library) can tamper with its execution. Now that we
have complete mediation, we may additionally enforce some access
control policies,for instance constraining the kind of requests, their
number of requests, and their airguments.

The TS?proxy, listed below, takes three string arguments: the
target URL, the API function name, and the JSON-formatted argu-
ments. It checks that the URL is well-formed and belongs to the
current site (to avoid leaking the token to any other site), then it se-
rializes the request as a query string, attaches the token, and makes
an AJAX call. Once wrapped, it exports the same interface as be-
fore to any (untrusted) scripts loaded on the page. Additionally, it
could be directly used by further TS? code.

var csrfToken: string = "%GENERATED_TOKEN%"
var targetOrigin: string = "%TARGET_ORIGIN%"
function Rpc(url:string,apifun:string,args:string): any {
if (String.startsWith(url,String.concat(targetOrigin,"/")) &&

String.noQueryHash(url)) {
var m = {method:apifun, args:args, token: csrfToken};
var request = String.concat("?",QueryString.encode(m));
var response = xhrGet(String.concat(url,request));}
return QueryString.decode(response); }

else return "unauthorized URL"; }

The first two lines define string literals, inlined by the server as
it generates the script—the TS? compilation process ensures, via
lexical scoping, that these two strings are private to this script. The
Rpc function is our secure replacement for xhrGet; which performs
the actual XMLHttpRequest. Compared with the original JavaScript,
it includes a few type annotations, and uses either safe copies of
builtin libraries, such as xhrGet, or typed TS? libraries, such as
QueryString (outlined below). Relying on memory isolation and
secure loading from TS?, a simple (informal) security review of
this script lets us conclude that it does not leak csrfToken.

Experimentally, we modified the OWASP library, to isolate and
protect the few scripts that directly use the token (such as the
proxy above) from the rest of the code, which deals with complex
formatting and browser-specific extensions, and is kept unchanged
and untrusted. The modified library retains its original interface
and functionality, with stronger security guarantees, based on strict,
type-based isolation of the token. Its code and sample client- and
server-side code are available online. To our knowledge, it is the
first CSRF library that provides protection from untrusted scripts.

6.2 Facebook API
Taking advantage of Cross-Origin Resource Sharing (CORS),
Facebook provides a client-side JavaScript API, so that trusted
websites may access their personal data—once the user has opted
in. Interestingly, Facebook also provides a “debug-mode” library,
with systematic dynamic typechecks similar to those automated by
TS?, to help programmers catch client-side errors. We focus on
two aspects of their large API: the encoding of strings, and cross-
domain messaging.
QueryString encoding. We give a TS? implementation of the
QueryString module (mentioned above) for the REST message for-
mat used in the Facebook API.

function decode (s:string): any {
var res: any = {};
if (s === "") { return res; } else {

var params: array string = String.split(s,"&");
for (var k in params) {

var kv: array string = String.split(params[k],"=");
res[kv["0"]] = kv["1"];};

return res;}}

12 2013/7/15

(The encode function is dual.) Our function illustrates support for
arrays. Importantly, this code may be used to parse untrusted mes-
sages; our wrapper for un to string is straightforward—if the argu-
ment is already a string, it is just the identity. Hence, one can write
efficient TS? that calls decode to parse messages received from the
adversary; this coding style prevents many parsing pitfalls.

Another TS?sample illustrates the usage of Rpc and our typed
JSON library (generalizing QueryString) to program a higher-level,
statically typed API. It shows, for instance, how to program a
client-side proxy for the “/me” method of the Facebook API, which
retrieves the user profile; this TS? function has the return type:
type profile =
{id: string; email: string; age_range: {min:number}; ... }

Cross-Domain Messaging. The Facebook API is meant to run on
any website and protects itself from a malicious host by using
iframes. For example, if the website calles FB.login, the API loads
an iframe from facebook.com that retrieves the current user’s access
token and then only sends it to the host website (via postMessage) if
the host is in a list of authorized origins.

Bhargavan et al.Bhargavan et al. (20132013) report attacks on a prior version of this
authorization code that were due to typing errors (and have now
been patched). We reimplement this code in TS? and show how
programmers can rely on typing to avoid such attacks.

The checkOrigins function below is given the current host ori-
gin and verifies it against an array of authorized origins. The
proxyMessage function uses this check to guard the release of the
token to the parent (host) website, using a safe copy of the primi-
tive postMessage function.
function checkOrigins (given:string,expected:array string):bool{
for (var k in expected) {
if(given === expected[k]) return true;}

return false;}
function proxyMessage(host:string,token:any,

origins:array string): any {
if (checkOrigins(host,origins))
postMessage(’parent’,token,host);}

In a previous version of the Facebook API, proxyMessage was
accidentally called with an origins parameter of type string, rather
than array string. This innocuous type error leads to an attack,
because the untyped version of the code succeeds with both strings
and arrays, but with different results. To see the core problem,
consider a call to checkOrigins where given = "h" and expected =

"http://W.com". The for loop goes through origins character-by-
character, and hence succeeds, when it should not.

In our code, this error is caught statically (if the incorrect call
to proxyMessage is local) or dynamically (if the call is from another
iframe); the check fails in both cases and the token is not leaked.

7. Conclusions and prospects
This paper aims to broaden the scope of gradual typing: not only it
is useful for migrating dynamically type-safe code to more struc-
tured statically typed code, it is also useful for moving from unsafe
code, vulnerable to security attacks, to a robust mixture of dynam-
ically and statically type-safe code.

Within the context of JavaScript, we have presented TS?, a lan-
guage with a gradual type system, a compiler, and runtime support
that provides several useful safety and confinement properties. Our
preliminary experience suggests that TS? is effective in protecting
security-critical scripts from attacks—without safety and confine-
ment, such properties are difficult to obtain for JavaScript, and in-
deed security for such scripts has previously been thought unob-
tainable in the presence of cross-site scripts.

Even excluding the adversary, TS? develops a new point in the
design space of gradual typing, using an approach based on runtime
type information. This has several useful characteristics, including

a simple and uniform failure semantics, and its applicability to a
language with extensible objects and object identity.

In the future, we plan to develop TS? along several dimensions.
On the practical side, we expect to integrate our ideas in an exper-
imental branch of the open source TypeScript compiler, targeting
the construction of larger secure libraries. On the theoretical side,
we plan to explore the formal certification of our compiler and run-
time. We also hope to develop our preliminary ideas on new notions
of blame to explain TS?’s runtime failures.

The TS? compiler will be available on the web, at a URL in the
supplementary material. Give it a go!

References
M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a

statically typed language. ACM ToPLAS, 13(2):237–268, 1991.
D. Akhawe, P. Saxena, and D. Song. Privilege separation in HTML5

applications. In Proceedings of USENIX Security, 2012.
T. Austin and C. Flanagan. Multiple facets for dynamic information flow.

In Proceedings of POPL, 2012.
A. Barth. The web origin concept, 2011. IETF RFC6454.
A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site

request forgery. In Proceedings of CCS, 2008.
R. Berjon, T. Leithead, E. Navara, E.D.and O’Conner, and S. Pfeiffer.

HTML5. http://www.w3.org/TR/html5/http://www.w3.org/TR/html5/. W3C Candidate Recom-
mendation.

K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-based de-
fenses against untrusted browser origins. In Proceedings of USENIX
Security, 2013.

G. Bierman, E. Meijer, and M. Torgersen. Adding dynamic types to C]. In
Proceedings of ECOOP, 2010.

G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a
production environment. In Proceedings of OOPSLA, 1993.

W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: a
web browser with flexible and precise information flow control. In
Proceedings of CCS, 2012.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
Proceedings of ICFP, 2002.

C. Flanagan. Hybrid type checking. In Proceedings of POPL, 2006.
C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and B. Livshits.

Fully abstract compilation to JavaScript. In Proceedings of POPL, 2013.
A. D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.

In Proceedings of CSFW, 2001.
A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In

Proceedings of ECOOP, 2010.
A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local control and state

using flow analysis. In Proceedings of ESOP, 2011.
D. Hedin and A. Sabelfeld. Information-flow security for a core of

JavaScript. In Proceedings of CSF, 2012.
D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.

Higher Order Symbol. Comput., 2010.
L. Ina and A. Igarashi. Gradual typing for generics. In Proceedings of

OOPSLA, 2011.
T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with

browser-enforced embedded policies. In Proceedings of WWW, 2007.
J. Magazinius, P. H. Phung, and D. Sands. Safe wrappers and sane policies

for self protecting JavaScript. In Proceedings of NordSec, 2010.
J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme

and Functional Programming Workshop, 2006.
J. G. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-

order casts. In Proceedings of ESOP, 2009.
N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.

Secure distributed programming with value-dependent types. In Pro-
ceedings of ICFP, 2011.

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verify-
ing higher-order programs with the Dijkstra monad. In Proceedings of
PLDI, 2013.

A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated
analysis of security-critical JavaScript APIs. In Proceedings of S&P,

13 2013/7/15

http://www.w3.org/TR/html5/

2011.
P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In

Proceedings of ESOP, 2009.

A. A formal embedding in JS?

A.1 A review of JS? with a partitioned heap model

type tag = Inv:tag | Ref:tag | Abs:tag | Un:tag | Stub:tag | Q:tag (∗ new for TS∗ ∗)

• Inv: the invariant private heap Let-bound variables and argu-
ments are immutable in f? but are held in heap locations in js?.
To keep track of these locations, we place them in a logical com-
partment called the Inv heap. A complication that we handle
is that these locations are not strictly immutable—JavaScript
forces us to pre-allocate locals, requiring a mutation after allo-
cation, and the calling convention also involves implicit effects.
Still, we prove that, once set, all the relevant fields of objects in
the Inv heap never change.
• Ref: the heap of private source references Locations used to

represent the translation of f? values of type ref t are placed
in the Ref heap, where an invariant ensures that the content of
a Ref heap cell, once initialized, always holds a translation of a
t-typed source value.
• Abs: the abstract heap of function objects Recall that every func-

tion in js? is associated with a heap-allocated object whose con-
tents is updated at every function call. We place these unstable
locations in the Abs heap, and ensure that translated source pro-
grams never read or write from these locations, i.e., function
objects are abstract.
• Un: the untrusted heap This heap compartment is used to model

locations under control of the attacker. Our full-abstraction re-
sult relies crucially on a strict heap separation to ensure that
locations from the other compartments never leak into the Un
heap (with one exception, discussed next).
• Stub: the heap of declassified function objects Function objects

corresponding to stubs in the upfun wrapper are allocated in a
compartment of their own.
For typing embdedded TS?, we introduce one new heap frag-
ment:
• Q: invariant singleton heap, shared between TS? and the context.

Concretely, the following definitions set up the ambient signa-
ture of js? against which we program and verify JavaScript core
runtime functionality.
Monadic computation types. All computations in js? are typed in
the Dijkstra monad, DST. We recall its signature below.

type result a = V : a→result a | E : exn→result a | Err : result a
type DST :: a::? ⇒ ((result a⇒ heap⇒ E)⇒ heap⇒ E)⇒ ?
val returnDST : x:a→ iDST a (Λ p h. HeapInv h ∧ p x h)
val bindDST : DST a wp1

→ (x:a→DST b (wp2 x))
→DST b (Λp h. wp1 (λ r. r=V =⇒ wp2 (V.0 r) p ∧ . . .))

For enforcing heap invariants, we use an enhancement of DST,
called iDST.

type iDST a WP = DST a (WithInv a WP)
where WithInv a WP = Λp.λh.

HeapInv h ∧WP (λx h′. p x h′ ∧ HeapInv h′ ∧ δ h h′) h

Representation of dynamically typed expressions. The follow-
ing nest of mutually recursive types defines the representation of
JavaScript’s dynamically typed values in JS?.

logic array(string,pr) type obj
and pr = Data : dyn→pr | Accessor : get:dyn→set:dyn→pr
and tobj = TO: ∀p. t:tag→o:obj{p o}→v:tobj{TypeOf v=Object p t}
and loc = TL: ∀p. t:tag→ref (v:tobj{TypeOf v=Object p t})

→v:loc{TypeOf v=ORef p t}
and dyn = . . .
| Bool: bool→d:dyn{TypeOf d=bool}
| Num: float→d:dyn{TypeOf d=float}
| Str: string→d:dyn{TypeOf d=string}
| Obj: l:loc→d:dyn{TypeOf d=TypeOf l}
| Fun: ∀wp. o:dyn{Obj is l}

→ (this:dyn→args:dyn→ iDST dyn (wp o args this))
→d:dyn{TypeOf d=WP wp}

The type obj is an abstract type for JavaScript’s dictionary-based
object, interepreted in the logic as a map from string to properties
pr, where properties can either be Data-values, or Accessors.

The type tobj associates with every object in the heap an object
invariant p (instantiated by the constructor of the object), a tag t
recording the heap compartment in which the object resides—both
of these are purely specificational. The object o itself is refined by
the object invariants, and the refinement on the result recalls both
the invariant p and the tag t. Locations loc are heap references to
tobj values, with the suitable invariant and tag.

Type dyn is a refined type dynamic, where the refinement formu-
las serve to recover information about the values injected into dyn.
Notably, the refinement of a function is the predicate transformer
wp that is its logical specification in the iDST monad.
Abbreviations and notations. We make use of the following logi-
cal functions in the specifications that follow.

Inside (t:tag) , t ∈ {Ref, Abs}
Inside (d:dyn) , Inside d.tag
h[v] : obj , (Sel h v.loc.ref).obj
o[f] : dyn , (SelObj o f).value
o[[f]] : pr , SelObj o f
h[v]← o , Upd h v.loc.ref o
o[f]← v , UpdField o f (Data v)
(Obj l).loc , l
(Fun o).loc , o.loc
(TO t).tag , t
(TL t).tag , t
(Str).tag , Inv
(Num).tag , Inv
(Bool).tag , Inv
v.tag , v.loc.tag when v ∈ {Obj ,Fun }
(TL r).ref , r
(Obj l).obj , (Obj l)
(Fun o).obj , o
(TO o).obj , o
(Data v).value , v

A.2 Representation of runtime type information
We use it the datatype typ as a logical model of the JS? values that
represent TS? types.

type typ =
| String : typ
| Number : typ
| Any : typ
| Un : typ
| Data : string→ typ
| Arrow : typ→ typ→ typ
| Rec : list (string ∗ field)→ typ

and field = (bool ∗ typ)

We define a heap-predicate, Rep t o h, to assert that the contents
of o in the heap h is a representation of the source type t.

14 2013/7/15

type Rep :: typ⇒ obj⇒ heap⇒ E
type RepF :: field⇒ obj⇒ heap⇒ E
Rep String o h = o["t"]=Str "string"
Rep Number o h = o["t"]=Str "number"
Rep Any o h = o["t"]=Str "Any"
Rep Un o h = o["t"]=Str "Un"
Rep (Data s) o h = o["t"]=Str "data"∧ o["name"]=Str s
Rep (Arrow t1 t2) o h = o["t"]=Str "arrow"

∧ Rep t1 (h[o["arg"]]) h
∧ Rep t2 (h[o["ret"]]) h

Rep (Rec fs) o h = o["t"]=Str "record"
∧ ∀f,t ∈ fs. f ∈ dom o ∧ RepF (f,t) h[o[f]] h
∧ AsSet o["fields"] h = { f | (f,) ∈ fs}

RepF (m,t) o h = o["mut"]=Bool m ∧ RepF t h[o["t"]] h

Lemma 2 (Unique representation of types).
∀t t′o h. Rep t o h ∧ Rep t′ o h =⇒ t=t′

Proof. By induction on the structure of t.

A.3 Translation of types

All values of source TS? type t are represented as JS? of type dyn.
To recover the precision of source types in JS? we introduce type
indexed heap predicates ψt , where ψt d h states that the value
d:dyn is the translation of a source value of type t in the heap h.
Since a source value allocated at the type { f :a number}, may evolve
to become a value of type { f :a number,g :a number}, we require a
type-indexed heap-predicate.

Heap predicates for source types. Next, we show the definition
of ψt d h, a predicate asserting that in the heap h, the value d is the
translation of some source value of type t.

(In the main paper text, ψt is written as [[t]], ψ ′t as Tagged t, and
finally ψ ′′t as Is t.)

ψstring d h = TypeOf d=string
ψnumber d h = TypeOf d=float
ψun d h = IsUn d
ψt d h = ∃u <: t.ψ ′u d h ∧ Initialized h[d]
ψ ′t d h = ψ ′′t d h ∧ Rep t h[h[d]["rtti"]] h
ψ ′′any d h = Primitive d ∨ Fun is d

∨ (TypeOf d=ORef ι Ref ∧ restAny {} d h)
ψ ′′T d h = TypeOf d=ORef ι Ref ∧

∨
Dt̄→T

h[d]["c"]=Str "D"
∧ ∧i ψti (h[d][i]) h ∧ restAny {1..n} d h

ψ ′′f̄ :ā t̄ d h = TypeOf d=ORef ι Ref
∧ ∀fi. fi ∈ dom h[d] ∧ ψti h[d][f] h ∧ restAny f d h

restAny fs d h = ∀f∈dom(h[d])\fs. ¬Reserved f =⇒ ψany h[d][f] h
ψ ′′t1→t2 d h = TypeOf d = WP ψt1 ψt2 ∧WithCode d
WP ψt1 ψt2 = λo args this.Λp.λh.

Initialized h[args]∧ψt1 h[args]["0"] h
∧∀r h′Z. (ResultIs r (λd. ψt2 d h′)

∧(LocalsOK Z h =⇒ LocalsOK Z h′))
=⇒ p r h′

WithCode d = TypeOf d.obj=ORef (λo. Initialized o
=⇒ o["@code"]=d) Abs

Reserved f = Internal f ∨ f="rtti"

The case of ψt→t ′ (the translation of source function types) is
most interesting. We require the type of the translated value to be
function with a predicate transformer WP ψt ψt′ corresponding to
the source type—that argument to the function must be initialized
and must contain (at index "0") a value satisfying the ψt , the heap-
predicate for the argument; and if the function returns normally, it
produces a value satisfying the heap predicate for the result type.

Additionally, φt→t ′ requires the function object, once initialized, to
always contain the translation of the source type in its "rtti" field.

Lemma 3 (ψ-predicates respect subtyping).
∀d,h, t,u.t <: u ∧ ψt d h=⇒ ψu d h

Proof. By induction on the structure of t, and then induction on the
structure of the subtyping judgment.

Lemma 4 (ψ ′′-predicates respect Any-subtyping).
∀d,h, t.t <: Any ∧ ψ ′′t d h=⇒ ψ ′′Any d h

Proof. By induction on the structure of t.

Lemma 5 (ψ-predicates rely only on the inside heaps).
∀h h′. (∀ x. Inside x =⇒ h[x]=h′[x]) =⇒ ∀t y. ψt y h⇐⇒ ψt y h′

Proof. By induction on the structure of t.

Lemma 6 (Uniqueness of ψ ′).
∀t u v h. ψ ′t v h ∧ ψ ′u v h =⇒ t=u

Proof. Follows from Lemma 22

Lemma 7 (ψ ′ subtype ψ).
∀t u v h. ψt v h ∧ ψ ′u v h =⇒ u <: t

Proof. By unfolding and using Lemma 66.

Lemma 8 (Function values have arrow tags).
∀d t h. (Fun is d ∧ ψ ′t d h) =⇒ ∃u1,u2. t=u1 →u2.

Proof. Case analysis on t (proof by contradiction).

A.4 Heap invariants

Un values. The predicate IsUn v defines when the value v could have
been produced by, or can be given to, the context. Un values include
primitives; references to objects in the Un heap; Stub objects that
have been yielded to the context; or the immutable Q object.

IsUn x , TypeOf x ∈ {bool, string, float}
∨ x.tag = Un
∨ (x.tag = Stub ∧ "@declassified" ∈ dom x)
∨ x.tag = Q

un , x:dyn{IsUn x}

As we will see shortly, it is convernient to lift the notion of Un to
properties (IsUnProperty), objects (IsUnObj), and functions (Un2Un).

IsUnProperty (Data x) , IsUn x
IsUnProperty (Accessor (g, s)) , IsUn g ∧ IsUn s
IsUnObj o , ∀f. f ∈ dom o =⇒ IsUnProperty o[[f]]
Un2Un , λo args this post h. IsUn this ∧ IsUn args ∧

(∀ r h′. Result r IsUn =⇒ post r h′)

15 2013/7/15

The Q compartment. The predicate IsQ o on an object establishes
that o’s prototype points to the singleton heap compartment, Q. The
predicate QSpec gives types to each field of Q.prototype.

IsQ o h , TypeOf o["@proto"]=ORef QSpec Q
∧ "fields"∈ dom o
∧ ∀f ∈ AsSet o["fields"] h. f ∈ dom o
∧ ∀f ∈ dom o. f="fields" ∨ Internal f ∨ f="rtti"

∨ f ∈ AsSet (o["fields"]) h
QSpec o = TypeOf o["defineProperty"]=ORef defineProperty Q

∧ TypeOf o["hasOwnProperty"]=ORef hasOwnProperty Q
∧ . . .
∧ TypeOf o["wrap"]=ORef wrap Q

HeapInv, the global heap invariant. Our main heap invariant con-
tains 5 clauses, shown below. Clause (1) asserts that Un all values
reachable from Un values are also Un. Clause (2) asserts that once a
Stub object has been declassified that all its components can safely
be yielded to the context. Both these clauses are not TS?-specific,
and are inherited from our prior work. Clause (3) asserts that every
reference to the Q-compartment has the type of Q.prototype. Clause
(4) asserts that every field of an object in the Inv compartment is
initialized. Clause (5) asserts that every object in the Ref ccompa-
rtment is an instance of Q and all its fields are initialized. Clause
(6) asserts that for every initialized object o in the inner heap, the
contents of o are safely described by the type represented by the
"rtti" field of o.

HeapInv h , ∀x. x ∈ dom h =⇒
(1) (IsUn x =⇒ IsUnObj h[x])
(2) ∧ (x.tag=Stub ∧ "@declassified" ∈ dom h[x]

=⇒ IsUnObj h[l])
(3) ∧ (x.tag=Q =⇒ Fun is x ∨

TypeOf h[x]=ORef QSpec Q)
(4) ∧ (x.tag=Inv =⇒ InitFields h[x])
(5) ∧ (x.tag=Ref =⇒ Obj is x ∧ IsQ h[x] ∧

InitFields h[x])
(6) ∧ (x.tag=Ref ∧ InitializedV x h ∧

"rtti"∈ dom(h[x]))=⇒ Typed x h
(7) ∧ x.tag=Abs ∧ InitializedV x h =⇒

Typed (h[x]["@code"]) h

Typed d h , ∃t. ψ ′t d h
Interp rtti d h , ∃t. Rep t rtti h ∧ ψ ′′t d h
InitializedV d h , Primitive d ∨ Initialized h[d]
Initialized o , o.tag ∈ {Inv,Ref,Abs} =⇒ "@init" ∈ dom o

∨ (o.tag = Q ∨ IsUn o)
InitFields o , ∀f. f ∈ dom o ∧ ¬ Internal f

=⇒ Data is o[[f]] ∧ InitializedV o[f] h

δ , the heap evolution invariant. We also constrain how the heap
evolves using the 2-state invariant δ , which has 4 clauses. Clause
(1) ensures that no heap objects are deallocated (hiding the details
of garbage collection). Clause (2) ensures that objects in the Inv
compartment never change after initialization. Clause (3) is most
specific to TS? and ensures that after initialization, the "rtti" for an
object in the inner heap evolves only “downward” in the subtyping
hierarchy. Clause (4) ensures that the contents of RTTI objects
never change.

δ h0 h1 ,
(1) (∀ l ∈ dom h0. l ∈ dom h1 ∧ (Initialized h0[l] =⇒ Initialized h1[l])
(2) ∧ (∀ l ∈ dom h0. l.tag=Inv ∧ Initialized h0[l]

=⇒ (∀ f ∈ dom h0[l]. Internal f ∨ h0[l][f]=h1[l][f]))
(3) ∧ (∀ l ∈ dom h0. Inside l ∧ Initialized h0[l]

=⇒ (∀ t0, t1. Rep t0 h0[l]["rtti"] h0 ∧ Rep t1 h1[l]["rtti"] h1
=⇒ t1 <: t0))

(4) ∧ (∀ o, t. Rep t o h0 =⇒ Rep t o h1)

Lemma 9 (δ preserves ψ).
∀v h0 h1 t. HeapInv h0

=⇒ HeapInv h1
=⇒ δ h0 h1
=⇒ ψt v h0
=⇒ ψt v h1

.

Lemma 10 (δ preserves ψ ′ for functions).
∀t, u, f, h, h′. ψ ′t→u f h

=⇒ δ h h′
=⇒ ψ ′t→u f h′

Proof. Proof: Use Lemma 99, and then equality on WP and transitiv-
ity.Technically, we require WP t1 t2 to be injective in t1, t2. That’s
easily established by inspection.

A.5 The JSVerify API (partial)
The basic API to each heap compartment is unchanged from JS?.
However, we provide a new interface to objects in the Ref heap,
reflecting the fact that the are all Q objects. We also provide an
interface to the new Q-compartment. The API functions are shown
in Figure 33, Figure 44, and Figure 55.

Definition 11 (LocalsOK). We write LocalsOK x:t h for the follow-
ing formula, i.e., locals are pairwise distinct, have a ”0” field, and
satisfy the heap invariant, but are yet to be initialized.

∀y,z ∈ x:t. y.loc.ref 6= z.loc.ref∧
y∈x:t y.tag = Inv ∧ y.loc.ref ∈ dom h ∧ "0" ∈ dom h[y] ∧ not(Initialized h[y])

Notation: We write: S;Γ ` {Pre}e{Post}
Post :: heap⇒ dyn⇒ heap⇒ E
and Pre : heap⇒ E,
for S;Γ ` e : iDST dyn ψ

and S;Γ,h : heap � Pre h =⇒ WithInv dyn ψ (Post h) h.

Notation: We write: Γ ` Z.e {Post} for
JSVerify;Γ,ΓZ ` {LocalsOK(Z)}e{Post}, where

From Γ ` Z.e {Post} we have Γ ` Z′.e {Post}, for Z′ ⊇ Z.

Definition 12 (Local environment). Given locals(e) = xi, a set of
top-level let-bound variable bindings in e, we write Γlocals(e) for
the environment xi:dyn{TypeOf xi = ORef ϕ Inv}.
Theorem 2 (Type preservation (strengthened IH)).
If Γ f̀ e : t e′,
for any Z ⊇ locals(e),
Γ′ = [[Γ]], f :dyn,ΓZ ,
Γ′ ` locals(e).e′ {Post (Z \ locals(e)) t}.
where

Post X t =
λh x h′. ResultIs x (λd. ψt d h′) ∧ LocalsOK X h =⇒ LocalsOK X h′

Proof: We proceed by induction on the translation judgment.
We start with the most interesting cases:
(T-Let) and (T-Abs), which manipulate local variables,
then (T-x), etc.

16 2013/7/15

ϕ = λflds."0" ∈ dom flds
ι = λ . True
locals(gλx:tx.e) = g
locals(v) = · otherwise
locals(e e′) = locals(e), locals(e′)
locals(e[e′]) = locals(e), locals(e′)

locals(ge1[e2]) = g,g f
locals(ge1 e2) = g f ,gv,gt ,garg,gret
locals(ge1[e2] = e3) = g,g f ,gv,gt
. . .
locals(letx:t1 = e1ine2) = x, locals(e2)

Γ f̀ e : t e′
Γ(x) = t

Γ f̀ x : t readVar f x
(T-X)

Γ f̀ v̄ : t̄ ē
Γ f̀ Dt̄→T v̄ : T data D ē:t̄ T

(T-D)

Γ,x:tx ò e : t e′ ȳ:t̄ =locals(e) src any string constant
Γ f̀

gλx:tx.e : tx→ t function g tx→ t src λo.λ .λx.witness(); let ȳ = mkLocalInv ϕ () in e′
T-Abs

Γ f̀ e : t ′→ t e1 Γ f̀ e′ : t ′ e2

Γ f̀ e e′ : t applyT t ′ t f e1 `global (mkInv ϕ (Init {"0" 7→ e2}))
(T-App)

Γ f̀ e1 : t1 e′1 Γ,x:t1 f̀ e2 : t2 e′2
Γ f̀ let x = e1 in e2 : t2 setLocal f x e′1;e′2

(T-Let)
Γ f̀ v : t e t ∈ {bool,any} Γ f̀ e1 : t e′1 Γ f̀ e2 : t e′2

Γ f̀ if v then e1 else e2 : t if asBool e then e′1 else e′2
(T-If)

Γ f̀ ē : t̄ ē′ { f̄ :ā t̄}= t]u S ` t <: any

Γ g̀ { f :e} : u record g { f̄ : ē} u
(T-Rec)

Γ ` e : t e′ t = t ′]{g :a u} ¬Reserved g
Γ f̀ e.g : u Qselect φt φu f e′ (Strg)

(T-Rd)

Γ f̀ e : t e1 t =]{g :w u} Γ f̀ e′ : u e2 ¬Reserved g

Γ f̀ e.g = e′ : u Qupdate φt f e1 "g" e2
(T-Wr)

∀i.Γ f̀ ei : any e′i
Γ f̀

ge1[e2] f̀ : any read f g e′1 e′2
(A-Rd)

∀i.Γ f̀ ei : any si

Γ f̀
ge1[e2] = e3 : any write f g e′1 e′2 e′3

(A-Wr)
∀i.Γ f̀ ei : any e′i

Γ f̀
ge1 e2 : any applyAny f g e′1 e′2

(A-App)

Γ f̀ e : t ′ e′ t ′ ∼ t

Γ ` 〈isTag t〉e : bool QIsTag f (rtti f t ′) (rtti f t) e′
(A-IsT)

Γ f̀ e : t ′ e′ t ′ ∼ t t ′ 6= un

Γ f̀ 〈canTag t〉e QCanTag f (rtti f t) (rtti f t ′) e′
(A-CanT)

Γ f̀ e : t ′ e′ t ′ ∼ t

Γ f̀ 〈canWrap t〉e : bool QCanWrap f (rtti f t) (rtti f t ′) e′
A-CanW

Γ f̀ e : t ′ e′ t ′ ∼ t t ′ 6= un

Γ f̀ 〈setTag t〉e : t QSetTag f (rtti f t ′) (rtti f t) e′
(A-SetTag)

Γ f̀ e : t ′ e′ t ′ ∼ t

Γ f̀ 〈wrap t〉e : t QWrap f (rtti f t ′) (rtti f t) e′
(A-Wrap)

Γ f̀ e : t e′ S ` t <: t ′

Γ f̀ e : t ′ e′
(T-Sub)

rtti f T = QData f (Str "T")
rtti f (t1→ t2) = QArrow f (rtti f t1) (rtti f t2)
rtti f (g:at]u) = QAddField f (rtti f u) ”g” (Bool[[a]]) (rtti f t))
. . .
function g (t→ t ′) src v = setLocal f g (mkFunAbs WPψt ,ψt′ src v);

QdefineRTTI f (readVar f g) (Str "rtti") (rtti f (t→ t ′));(readVar f g)
record f ḡ:ē u = let l = newQ f () in let = Qupdate f ḡ ē in let = QsetMeta f"rtti"(rtti f u) in l
Data D ē:t̄ T = let l = new Q f () in let = Qupdate "c" Str "D" in let = Qupdate f ī ē in let = QsetMeta f"rtti"(rtti f T) in l
read o g e e f = setLocal o g e1;setLocal o g f e f ;

if opAnd (opEq (opTypeOf (readVar o g)) (Str "object")) (QHasField o (readVar o g) (readVar o g f))
then Qselect o (readVar o g) (readVar o g f) else Qdie o

write o g e f v = setLocal o g e;setLocal o g f f ;setLocal gv v;
if opTypeOf (readVar o g)(Str "object") then
setLocal o gt (QtagOf o (readVar f g))
if Qmutable o (readVar o gt) (readVar o g f)
then Qupdate o (readVar o g) (readVar o g f)

(QsetFieldTag o (readVar o gt) (readVar o g f) (readVar o gv)) else Qdie o
else Qdie o

applyAny o g e f ev = setLocal o g f e f ;setLocal o gv ev;setLocal o gt (QtagOf o (readVar o g f))
if opTypeOf (readVar o g f)(Str "function") then
setLocal o garg (Qselect o (readVar o gt) (Str "arg"));
setLocal o gret (Qselect o (readVar o gt) (Str "ret"));
let targ, tret = parseRep (readVar o garg),parseRep (readVar o gret) in
let args =(mkInv ϕ Init {"0" 7→ (QsetTag o (readVar o garg) (readVar o gv))}) in
applyAny targ tret o (readVar o g f) `global args
else Qdie o

[[Γ]] Translation of environments [[·]] = ·
[[Γ,x:t]] = [[Γ]],x:[[t]]
[[t]] = x:dyn{TypeOf x = ORef ϕ Inv ∧ ∃h. Witness h ∧ Initialized h[x] ∧ ψt h[x]["0"] h}

Figure 6. Formal typed translation from TS? to JS?

17 2013/7/15

val newQ: caller:dyn
→unit
→ iDST dyn (fun post h⇒
∀l h′ l′. l ∈ dom(h) =⇒ l ∈ dom(h′) ∧ h′[l] = h[l]

∧ l′ /∈ dom(h) ∧ InitializedV l′ h′ ∧ IsQ h′[l′] h′
∧ AsSet (h′[l′]["fields"]) = {} =⇒ post (V l′) h′)

val Qselect: caller:dyn
→ l:dyn
→ f:dyn{f=Str s ∧ ¬Reserved s}
→ iDST dyn (fun post h⇒

TypeOf l = ORef ι Ref ∧ InitializedV l h ∧ f ∈ dom(h[l])
∧ post (V h[l][f]) h)

val Qupdate: caller:dyn
→ l:dyn
→ f:dyn{f=Str s ∧ ¬Reserved s}
→v:dyn
→ iDST dyn (fun post h⇒

TypeOf l = ORef ι Ref ∧ InitializedV l h ∧ InitializedV v h ∧
let o = h[l][f]← v; h′ = h[l]← o in
("rtti" ∈ dom(o) =⇒ Interp o["rtti"] l h′) ∧ post (V v) h′)

val QsetMeta: caller:dyn
→ l:dyn
→ f:string{f="rtti"}
→rtti:dyn
→ iDST dyn (fun post h⇒

TypeOf l = ORef ι Ref ∧ InitializedV l h ∧ InitializedV rtti h ∧
let h′ = h[l]← (h[l]["rtti"]← v) in
Interp h′[rtti] l h′ ∧ post (V rtti) h′)

val QdefineRTTI: caller:dyn
→ l:dyn
→ f:string{f="rtti"}
→rtti:dyn
→ iDST dyn (fun post h⇒

l.tag=Abs ∧ InitializedV l h ∧ InitializedV rtti h ∧
let h′ = h[l]← (h[l]["rtti"]← v) in
Interp rtti l h′ ∧ post (V rtti) h′)

val QtagOf: caller:dyn
→ l:dyn
→ iDST dyn (fun post h⇒

InitializedV l h
∧ (Primitive l =⇒ post (V [[TypeOf l]]) h)
∧ (Inside l =⇒ ("rtti" ∈ dom(h[l]) ∧ post (V h[l]["rtti"]) h)))

val QsetTag: caller:dyn
→src:dyn
→ tgt:dyn
→ l:dyn
→ iDST dyn (fun post h⇒

InitializedV src h ∧ InitializedV tgt h ∧
∃t,u. Rep u src h ∧ Rep t tgt h ∧ ψu l h
∧ (∀ r h′. ResultIs r (λ d. ψt d h′) =⇒ post r h′))

Figure 3. API to Q objects in heap

val QhasField: caller:dyn
→ l:dyn
→ f:dyn
→ iDST Bool (fun post h⇒
TypeOf l = ORef ι Ref ∧ InitializedV l h ∧
(TypeOf f=string ∧ ¬Reserved f =⇒ post (AsBool(f ∈ dom(h[l]))) h))

val Qmutable: caller:dyn
→rtti:dyn
→ f:dyn
→ iDST dyn (fun post h⇒

InitializedV rtti h ∧ ∃t. Rep t h[rtti] h ∧
post AsBool(TypeOf f=string ∧ ¬Reserved f ∧
(t=Any ∨ t={f:w }] ∨ t={ḡ: }, f /∈ ḡ))) h

val QsetFieldTag: caller:dyn
→rtti:dyn
→ f:dyn
→v:dyn
→ iDST dyn (fun post h⇒

InitializedV rtti h ∧ InitializedV v h ∧ (Inside v ∨ Primitive v)
∧ ∃t. Rep t rtti h ∧ (t=Any ∨ t={f:w }] ∨ t={ḡ: }, f /∈ ḡ) ∧
let u = if t=Any ∨ t={ḡ: }, f /∈ ḡ then Any else if t={f:wt′}] then t′ in
(∀ r h′. ResultIs r (λ d. ψ ′u d h′) =⇒ post r h′))

val Qwrap: caller:dyn
→src:dyn
→ tgt:dyn
→ l:dyn
→ iDST dyn (fun post h⇒

InitializedV src h ∧ InitializedV tgt h ∧
∃t,u. Rep u src h ∧ Rep t tgt h ∧ ψu l h
∧ (∀ r h′. ResultIs r (λ d. ψt d h′) =⇒ post r h′))

val QcanTag: caller:dyn
→src:dyn
→ tgt:dyn
→ l:dyn
→ iDST dyn (fun post h⇒

InitializedV src h ∧ InitializedV tgt h ∧
∃t,u. Rep u src h ∧ Rep t tgt h ∧ ψu l h
∧ post (AsBool(ψt l h)) h)

val QcanWrap: caller:dyn
→src:dyn
→ tgt:dyn
→ l:dyn
→ iDST dyn (fun post h⇒

InitializedV src h ∧ InitializedV tgt h ∧
∃t,u. Rep u src h ∧ Rep t tgt h ∧ ψu l h
∧ post (AsBool(ψt l h)) h)

Figure 4. Q API continued

val rtti: caller:dyn
→ t:typ
→ iDST dyn (fun post h⇒
∀h′ l′ l. l ∈ dom(h) =⇒ l ∈ dom(h′) ∧ h[l] = h′[l] ∧ l′.ref /∈ dom(h)

∧ Rep t h′[l′] h′ ∧ InitializedV l′ h′ =⇒ post l′ h′)

val opTypeOf: v:dyn
→ t:string{t="object" ∨ t="function"}
→ iDST Bool (fun post h⇒ InitializedV v h ∧ post (AsBool(
t="object" =⇒ TypeOf v=ORef ∧ t="function" =⇒

Fun is v)) h)

Figure 5. Other API

18 2013/7/15

Case T-Let:
Γ f̀ e1 : t1 e′1 Γ,x:t1 f̀ e2 : t2 e′2

Γ f̀ let x = e1 in e2 : t2 erhs
Where erhs = let y = e′1 in e′rhs

and e′rhs = let = setLocal f x y in
e′2

and X1 = locals(e1) and X2 = locals(e2), and X = X1,x:t1,X2

From the IH, we have,
(1) ∀Z ⊇ X1.Γ0 ` Z.e′1 {Post (Z \X1) t1}
(2) ∀Z ⊇ X2.Γ0,x:[[t1]] ` Z.e′2 {Post(Z \X2)t2}

where, Γ0 = [[Γ]], f :dyn,ΓZ ,
Our goal (G) is:
∀Z ⊇ X .Γ0 ` Z.erhs {Post (Z \X) t2}

We first show (S1):
∀Z ⊇ X2,x.Γ0,y:dyn ` {A}e′rhs {Post(Z \X)t2}

for A = λh0. LocalsOK Z h0 ∧ ψt1 y h0 ∧ Initialized y h0

We read off the following triple from the spec of setLocal,
strengthening the pre-condition:
∀Z ⊇ X2,x.Γ0,y:dyn ` {A′} setLocal f x y{B}

for B′ = λh0 h1. LocalsOK (Z \{x}) h1 ∧ x 6∈ X2
∧ h1 = h0[x]← Init (h0[x]["0"]← y)
∧Witness h1

and A′ = λh0.
TypeOf x = ORef ϕ Inv
∧ LocalsOK Z h0
∧ Initialized y
∧ ϕ (Init (h[x]["0"]← y))

Next, we strengthen the pre-condition A′ to A,
based on the following observations:

ϕ (Init (h[x][”0”]← y)) is a tautology.
TypeOf x = ORef ϕ Inv is derivable from

Γx:t1 the local environment which is included in Γ0.

Now, we have (S1.1.1)
∀Z ⊇ X2,x.Γ0,y:dyn ` {A} setLocal f x y{B′}

Then, we strenthen the post-condition B′ to B where B =

λh0 () h1. B h0 () h1 ∧ ψt1 y h1
To prove this post-condition, we rely on ψt1 y h0 in the pre-condition A
And Lemma 55 (noting that h1 differs from h0 only in Inv locations)
Next, we weaken the context of (2) (to introduce y in the environment),
and weaken the post-condition, getting:
(S1.2.1) ∀Z ⊇ X2.Γ0,x:[[t1]],y:dyn ` {LocalsOK Z}e′2 {Post(Z \X)t2}
Note, x:[[t1]] is the translation of source binding x:t1.
As such, it requires the local variable x in the translation to be
initialized with an object satisfying ψt1 .
But, we can rearrange the refinement, pushing the ψt1
clause into the pre-condition leaving just Γx:t1 , a local environment
of the translation, included in the context Γ0, to get (S1.2).
(S1.2) ∀Z ⊇ X2.Γ0,y:dyn ` {Pre}e′2 {Post(Z \X)t2}
where Pre is
λh. LocalsOK Z h ∧ ∃h′. Witness h′ ∧ Initialized h′[x]

∧ ψt1 h′[x]["0"] h′

To arrive at (S1), we introduce the
quantified variable Z ⊇ X2,x into the context.

Then, we instantiate (S1.1) with Z, and (S1.2) with Z \{x}.
To compose the triples, we need to show:
Γ0,y:dyn,h0:heap,h1:heap |= B h0 () h1 =⇒ Pre h1
Inlining:

(H) Z ⊇ X2,x
(a) ∧ x 6∈ X2
(b) LocalsOK (Z \{x}) h1
(c) ∧ h1 = h0[x]← Init (h0[x]["0"]← y)
(d) ∧Witness h1
(e) ∧ ψt1 y h1
=⇒
(0) Z \ x⊇ X2
(1) LocalsOK Z \{x} h1
(2) ∧ ∃h′.

(2.0) Witness h′
(2.1) ∧ Initialized h′[x]
(2.2) ∧ ψt1 h′[x]["0"] h′

(0) is trivial froM (H) and (a).
(1) is trivial from (b).
(2) We instantiate h′ with h1.
(2.1) Initialized h1[x] is easy from (c).
(2.2) Trivial from (e).
So, we have (S1).

Next, before deriving the goal, we strengthen the pre-condition of (1)
to obtain: (1.1) Γ0 ` {Pre1}e′1 {Q(Z \X1, t1)} | X
Now, to derive the goal, we introduce the

quantified variable Z ⊇ X into the context.
Then, we instantiate (1) with Z, and (S1) with Z \X1.
After instantiation, to compose (1) and (S1), we need to show:

Γ0,h0:heap,y:dyn,h1:heap |= LocalsOk Z h0 ∧
Post (Z \X1) t1 h0 y h1 =⇒ A h1

Inlining:
(H) Z ⊇ X
(a) ∧ X = X1,x:t1,X2
(b) LocalsOK (Z \X1) h1
(c) ∧ ψt1 y h1
(d) ∧ Initialized y h1
=⇒
(1) LocalsOK Z h1 ∧ ψt1 y h1 ∧ Initialized y h1

Which is trivial.

Case T-X:
Γ(x) = t

Γ f̀ x : t e′

where e′ = readVar f x
Our goal:
∀Z.[[Γ]], f :dyn,ΓZ ` Z.e′ {Post Z t}
Introducing Z into the context, from the spec of readVar we get:
[[Γ]], f :dyn,ΓZ ` {A}e′ {Post Z t}
Where
Ah =
(1) TypeOf x=ORef ϕ Inv
(2) ∧ ∃h′. Witness h′ ∧ Initialized h′[x]
(3) ∧ (∀ h′. Witness h′ =⇒ δ h′ h)

=⇒ Initialized h[x]["0"] h ∧ ψt h[x]["0"] h
(4) ∧ LocalsOK Z h =⇒ LocalsOK Z h (∗ trivial ∗)
From [[x:t]] we get (1) and (2).
For (3), we use Lemma 99.

Case A-App:
∀i.Γ f̀ ei : any e′i

Γ f̀
ge1 e2 : any e′

where e′ = applyAny f g e′1 e′2

19 2013/7/15

From the IH on the two premises, and with standard reasoning about locals,
after the assignments to g f and g v, we get:

(IH1) ψany h[g f]["0"] h
(IH2) ψany h[g v]["0"] h

Now, we focus on proving just two key triples, The rest is straightforward.

TRIPLE 1.

targ:typ, tret:typ |

{
HeapInv h
∧ Rep (targ→ tret) h[g f]["rtti"] h
∧ Rep targ h[g arg]["0"] h
∧ Rep tret h[g ret]["0"] h
∧ ψ ′ {targ→ tret} h[g f]["0"] h
∧ (Inside (read o g v) ∨ Primitive (read o g v))
}

QsetTag (read o g arg) (read o g v)

{h, d, h′.
HeapInv h′ ∧ delta h h′
∧ ψ ′ {targ} d h′
∧ ψ ′ {targ→ tret} h′[g f]["0"] h′}

--
Proof:

Reading from the spec of QsetTag, we get to prove our triple if:

(a) HeapInv h
(b) ∧ Rep (targ→ tret) h[g f]["rtti"] h
(c) ∧ Rep targ h[g arg]["0"] h
(d) ∧ Rep tret h[g ret]["0"] h
(e) ∧ ψ ′ {targ→ tret} h[g f]["0"] h
(f) ∧ (Inside (read o g v) ∨ Primitive (read o g v))

=⇒
(1) ∃t. Rep t (read o g arg) h
(2) ∧ (Inside (read o g v) ∨ Primitive (read o g v))

∀d h′.
(g) \ψ ′ t d h′ ∧ HeapInv h′ ∧ delta h h′

=⇒
(3) HeapInv h′ ∧ delta h h′
(4) ∧ ψ ′ {targ} d h′
(5) ∧ ψ ′ {targ→ tret} h′[g f]["0"] h′

(1) is derivable from (c), witnessing t with targ
(2) is the same as (f)
(3) is trivial from (g)
(4) is also from (g)
(5) From the delta h h′, for the Inv Heap, we know that

h[g f]["0"] = h′[g f]["0"]
Then, from (e) and Lemma 1010 we get (5).

TRIPLE 2.

targ, tret, h, args |

{HeapInv h
∧ TypeOf args =ORef varφ Inv
∧ Initialized h[args]
∧ ψ ′ {targ} h[args]["0"] h
∧ ψ ′ {targ→ tret} h[g f]["0"] h}

applyAny targ tret o (readVar o g f) l global args

{
h, r, h′.

ResultIs r (\d. ψ Any d h′)
}

--
Proof:

Reading from the spec of applyAny, we get to prove our triple if:

(a) HeapInv h
(a.1) ∧ TypeOf args =ORef varφ Inv
(a.2) ∧ Initialized h[args]
(b) ∧ ψ ′ {targ} h[args]["0"] h
(c) ∧ ψ ′ {targ→ tret} h[g f]["0"] h
=⇒
(1) TypeOf h[g f]["0"]=WP ψtarg ψtret
(2) ∧ Initialized h[args]
(3) ∧ ψtarg h[args]["0"] h
∧ ∀d h′.

(d) ψtret d h′ ∧ HeapInv h′ ∧ delta h h′
=⇒

(4) ψany d h′

(1) Unfolding (c), we get (1)
(2) From (a.2)
(3) Unfolding ψtarg in the goal, we get an existential,

and we instatiate the the bound var to targ and we use (b)
(4) We aim to show that tret <:any

-From (IH1) and Lemma 33,
we get targ→ tret <: Any

-From inversion on the subtyping judgment, we get tret <: Any

-From (d) and Lemma 33, we get (4).

Case T-App:
Γ f̀ e : targ→ tret e1 Γ f̀ e′ : targ e2

Γ f̀ e e′ : tret applyT targ tret f e1 `global (mkInv ϕ (Init {"0" 7→ e2}))

20 2013/7/15

From IH1, we have:

{HeapInv h1}
e 1
{
f, h2.

(1) ResultIs f (λ d. ψtarg→tret d h2 ∧ Initialized d h2)
(2) HeapInv h2 ∧ DeltaHeap h1 h2
}

From IH2, we have:

{..}
e 2
{
v, h3.

(3) ResultIs v (λ d. ψtarg d h3 ∧ Initialized d h3)
(4) HeapInv h3 ∧ DeltaHeap h2 h3
}

(Let h4 be the next heap after doing args = (mkInv ϕ (Init{"0" |→ v})))
We want to prove the postcondition

applyT targ tret o f glob args
{
r, h5.

(a) ResultIs r (\d. ψtret d h5) ∧ Initialized d h5
}

Reading the spec of applyT, we need to prove:

(b) ψtarg→tret f h4
(c) Initialized h4[args] h4
(d) ψtarg h4[args]["0"] h4
∀d h5.

(5) ψtret d h5 ∧ HeapInv h5 ∧ DeltaHeap h4 h5
=⇒

(e) ψret d h5 ∧ Initialized d h5

(b) follows from (1) and Lemma 99
(c) follows from mkInv
(d) follows from (3) and Lemma 99
(e) follows from (5)

Case T-Rec:
Γ f̀ ē : t̄ ē′ { f̄ :ā t̄}= t]u S ` t <: any

Γ g̀ { f :e} : u record g { f̄ : ē} u

From I.H. we have:

{ HeapInv h }
let v i = e i
{ h′.
(a i) ResultIs v i (λ d. ψti d h′) ∧ HeapInv h′ ∧ DeltaHeap h h′ }

Let h be the heap now (above results hold in h by Lemma 99

{HeapInv h}
let l = newQ f ()
{true}

Let heap be h1 now, and we know from the spec of newQ:
(b) TypeOf l = ORef ι Ref}

For each update field call, to prove the triple:

{ heap h1 }
updateQ f l g i v i
{true}

we need to prove (from the spec of updateQ):

(1) TypeOf l = ORef l Ref
(2) Initialized v i

let o = h1[l][g i] < v i in let h2 = h1[l] < o
(3) "rtti" ∈ dom(o) =⇒ Interp o["rtti"] o h2

(1) follows from (b)
(2) follows from a i (ψt =⇒ Initialized)
(3) follows from "rtti" /∈ dom(o)

Let h3 be the heap now, from spec of updateQ we know:

(c)∀ i. h3[l][g i] = v i

{h3}
let rt = rtti f u
{true}

No precondition on rtti. Let h4 be the heap, then from spec of rtti,

(d) l ∈ dom(h3) =⇒ h3[l] = h4[l]
(e) Rep u h4[rt] h4
(f) Initialized rt

QsetMeta f l "rtti" rt
{ h5, r . ResultIs r (λ d . ψu d h5) }

To prove this, we need to prove the following precondition
(from spec of QsetMeta)

(1) l.tag = Ref
(2) Initialized rt

(g) let h5 = h4[l] < (h4[l]["rtti"] < v)
(3) Interp h5[rt] l h5
(4) ψu l h5

21 2013/7/15

(1) follows from (b)
(2) follows from (f)
(3) expanding Interp:

∃t s.t. Rep t h5[rt] h5 ∧ ψ ′′t l h5

Choose t = u, then we need to prove

3a. Rep u h5[rt] h5
3b. ψ ′′u l h5

3a follows from h5[rt] = h4[rt] and (4) in Delta specification
3b expanding ψ ′′u ,

3b1. l.tag = Ref
3b2. ∀{g:t} ∈ u, g ∈ dom(h[l]) ∧ ψt h5[l][g] h5
3b3. restAny ū l h5

3b1 follows from (b)
3b2 from (c), (d), and (g), each g ∈ dom(h[l]) ∧

from (a i) and Lemma 99
3b3 From typing rule, fields not in u are subtype of Any, and so,

from (a i) and Lemma 33.

Case T-Rd:
Γ ` e : t e′ t = t ′]{g :a u}

Γ f̀ e.g : u Qselect f e′ g
From IH, we have:

{heap h . HeapInv h}
let l = e′
{(a) heap h1 . ψt l h1 ∧ DealtaHeap h h1 ∧ HeapInv h1}

We want to prove:

Qselect f l g
{ r, h2 . ResultIs r (λ d. ψu d h2) }

Reading spec of Qselect, this requires us to prove (h1 = h2):
(not internal f comes from typing rule)

(1) TypeOf l = ORef ι Ref
(2) Initialized h1[l]
(3) g ∈ dom(h1[l])
(4) ψu h1[l][g] h1

(1) follows from ψt where t is a record type.

From (a), we know ψt l h1, where t = t′] {g:a u}

That means, ∃t1 <: t, s.t. ψ ′t1 l h1 and (2)
Since t is a record type, t1 has to be a record type (inversion of subtyping)
and must have {g:a′ u′} s.t. either u′ = u or u′ <: u (depending on a).

Then, ψ ′′t1 l h1 tells us that (3) g ∈ dom(h1[l]) and ψu′ h1[l][g]
(4) then follows from Lemma 33.

Case T-Wr:
Γ f̀ e : t e1 t =]{ f :w u} Γ f̀ e′ : u e2 ¬Internal f

Γ f̀ e.g = e′ : u updateQ f e1 "f" e2

From IH1, we have:

{h:heap}
let l = e1
{(a) h1 . ψt l h1 }

From IH2, we have:

let v = e2
{(b) h2 . ψu v h2}

We want to prove:

Qupdate f l v
{h3 . ψt l h3}

From spec of Qupdate, this requires us to prove:

(1) TypeOf l = ORef ι Ref
(2) Initialized v

h3 = h2[l] < (h2[l][g] < v)
(3) "rtti" ∈ dom(h3[l]) =⇒ Interp (h3[l]["rtti"]) l h3
(4) ψt l h3

(1) follows from ψt where t is a record type
(2) follows from (b)
(3) expanding Interp h3[l]["rtti"] l h3:

∃t1 s.t.
3a. Rep t1 h3[l]["rtti"] h3[l]
3b. ψ ′′t1 l h3

(a) tells us that ψt l h1 and we know δ h1 h2,
so we have ψt l h2.

This means, ∃tsub <: t s.t. ψ ′tsub l h2 ∧ Rep tsub h2[l]["rtti"] h2
We instantiate t1 in expansion of Interp in (3) above with tsub

3a follows from h2[l]["rtti"] = h3[l]["rtti"] and that δh2h3

For 3b, we note that only g field is changed from h2[l] to h3[l]
Since t has {g:w u}, tsub must be a record type and have {g:w u}
So, we need to prove ψu v h3 -follows from (b) and Lemma 99.

Case A-Rd:
∀i.Γ f̀ ei : any e′i

Γ f̀
ge1[e2] f̀ : any read f g e′1 e′2

22 2013/7/15

From IH1, we have:

{heap h1}
let l = e1
{(a) heap h2. ψAny l h2}

{heap h2}
let g = e2
{(b) heap h3. ψAny l g}

We want to prove
(proof is modulo setLocal and readVar)

{heap h3}
Qselect f l g
{h4 r . ResultIs r (λ d . ψAny d h4)}

(From specs of opTypeOf, QhasField, we see that they do not modify heap)

From spec of Qselect, we get h3=h4 and we need to prove:
(1) TypeOf l = ORef ι Ref
(2) InitializedV l h3
(3) TypeOf g=string ∧ ¬Reserved g
(4) g ∈ dom(h3[l])
(5) ψAny h3[l][g] h3

(1) follows from postcondition of opTypeOf
(2) follows from (a) and δ h2 h3.
(3) and (4) follow from postcondition of QhasField
(5) From (a) and δ h2 h3, we get ψAny l h3

From Lemma 44, we get ψ ′′Any l h3
restAny clause in ψ ′′Any tells us that ψAny h3[l][g] h3

Case A-Wr:
∀i.Γ f̀ ei : any si

Γ f̀
ge1[e2] = e3 : any write f g e′1 e′2 e′3

From IH1:

{heap h1}
let l = e1
{(a) heap h2 . ψAny l h2}

{heap h2}
let g = e2
{(b) heap h3 . ψAny g h3}

{heap h3}
let v = e3
{(c) heap h4 . ψAny v h4}

We want to prove:

{heap h4}
let v′ = QsetFieldTag f (QtagOf f l) g v
{heap h5 ... }
Qupdate f l g v′
{h6,r. ResultIs r (λ d. ψAny d h5)}

(Qmutable doesn′t mutate heap)

It′s easy to see that preconditions of QsetFieldTag are satisfied.

Reading spec of Qupdate, precondition of Qupdate is:

(1) TypeOf g=string ∧ ¬Reserved g
(2) TypeOf l = ORef ι Ref
(3) InitializedV l h5
(4) InitializedV v′ h5

h6 = h5[l] < (h5[l][g] < v′)
(5) Interp h6[l]["rtti"] l h6
(6) ψAny v′ h6

(1) follows from the postcondition of Qmutable
(2) opTypeOf tells us that l is an ORef ,

from (a), we derive it′s ORef ι Ref
(3) from (a) it follows that InitializedV l h2,

from δh2h5, (3) follows
(4) follows similarly
(5) we have: ψAny l h5, i.e. ∃u <: Any . ψ ′u l h5

i.e. ψ ′′u l h5 and Rep u h5[h5[l]["rtti"]] h5
Claim: Rep u h6[h6[l]["rtti"]] h6, proof by third condition of δ

Claim: ψ ′′u l h6
proof sketch: we have u = Any, u = record type with no g, u = {g:tg}]

in every case, postcondition of QsetTag ensures that v′
respects RTTI assumption of u on g

Thus, choose t=u in the expansion of Interp
(6) When u = Any or u = record with no g, (6) immediately follows from

postcondition of QsetTag. When u has {g:tg}, from ψAny l,
we know tg <: Any, and then (6) follws from ψsubtyping.

Case T-Abs::
Γ,x:tx ò e : t e′ ȳ:t̄ =locals(e) src any string constant

Γ f̀
gλx:tx .e : tx → t function g tx → t src λo.λ .λx.witness(); let ȳ =mkLocalInv ϕ () in e′

23 2013/7/15

Let X = locals(e)

From IH, we have ∀Z ⊇ locals(e).
[[Γ,x : T]], o:dyn, ΓZ ` X.e′{Post(Z\X) t′}

Rewriting IH as a triple and rearranging refinements for [[x : t]]

(1) [[Γ]],o:dyn,ΓZ,x:t ` {Pre} e′ {Post(Z\X) t′}
where Pre h0 = LocalsOK X h0 ∧
(∃ h. Witness h ∧ Initialized h[x] h ∧ ψt h[x]["0"] h)

We note that:

{ λ h.Initiated h[x] h ∧ ψt h[x]["0"] h }
witness()
{λ ∃h . Witness h ∧ Initiated h[x] h ∧ ψt h[x]["0"] h}

and

{λ ∃h . Witness h ∧ Initiated h[x] h ∧ ψt h[x]["0"] h}
mkLocalInv ϕ X
{λ h0. LocalsOK X h0 ∧ ∃h . Witness h ∧ Initiated h[x] h ∧ ψt h[x]["0"] h}

Thus, we derive:

(2) [[Γ]]; o:dyn; ΓZ,x:t `
{λ h.Initialized h[x] h ∧ ψt h[x]["0"] h }
witness(); mkLocalInv ϕ X
{λ Pre}

Sequencing (2) and (1),

(3) [[Γ]]; o:dyn; ΓZ,x:t `
{λ h.Initialized h[x] h ∧ ψt h[x]["0"] h }
witness(); mkLocalInv ϕ X; e′ //writing is as body below
{Post (Z\X) t′}

Writing (3) in iDST monad:

[[Γ]],o:dyn,ΓZ,x:t ` body : iDST dyn (fun post h0.
Initialized h0[x] h0 ∧ ψt h0[x]["0"] h0 ∧
∀v, h1. Post(Z\X) t′ h0 v h1 =⇒ P v h1)

rewriting, weakening, and permuting:

[[Γ]],ΓZ ,o:dyn,this:dyn,x:dyn{TypeOf x = ORef ϕ Inv} ` body : iDST dyn
((WP ψt ψ ′t) o x this)

Using TAbs in three times, mkFunAbs call is type checked. The return
value of mkFunAbs with RTTI tagging gives us the required
postcondition

Case T-D: Similar to TRec.

Case T-Sub: Follows directly from Lemma 33.

Case A-SetTag,A-Wrap: Follow directly from the specifications.

val allocInv: ′P::(obj⇒ E)
→caller:dyn
→flds:obj
→ iDST dyn (fun ′Post h⇒

Admissible ′P
∧ not (Initialized flds)
∧ (∀ l p. ¬InHeap h (TLref l) ∧ AsE l=PT ′P Inv

=⇒ ′Post (Obj l)
(UpdHeap h (TLref l) (ConsObj flds "@proto" p))))

val setLocal: caller:dyn
→ l:dyn
→v:dyn
→ iDST unit (fun (′Post::result dyn⇒ heap⇒ E) h⇒

(TypeOf l=ORef ϕ Inv
∧ not(Initialized h[l])
∧ Initialized v
let flds = Init({"0"7→v}) in
∧ (∀ p. ′P (flds["@proto"]← p))
let h′ = (h[l]← (flds["@proto"]← h[l]["@proto"])) in
∧ (Witness h′ =⇒ ′Post (V ()) h′)))

let setLocal ′P caller l v =
setInv ′P caller l {Init({"0"7→v})}; witness()

val readVar: caller:dyn
→ l:dyn
→ iDST unit (fun (′Post::result dyn⇒ heap⇒ E) h⇒

(TypeOf l=ORef ϕ Inv
∧ (∃ h′. Witness h′ ∧ Initialized h′[l])
∧ ((∀ h′. Witness h′ =⇒ δ h′ h)

=⇒ ′Post (V h[l]["0"]) h))
let readVar caller l = recall();selectInv ϕ f x "0"

val setInv: ′P::(obj⇒ E)
→caller:dyn
→ l:dyn
→flds:obj
→ iDST dyn (fun (′Post::result dyn⇒ heap⇒ E) h⇒

(TypeOf l=ORef ′P Inv
∧ not(Initialized h[l])
∧ InitFields flds
∧ Initialized flds
∧ (∀ p. ′P (flds["@proto"]← p))
∧ ′Post (V Undef)

(h[l]← (flds["@proto"]← h[l]["@proto"])))))

→fldsf:fn
→v:dyn
→ iDST dyn (fun ′Post h⇒

TypeOf l = ORef ′P Inv
∧ not (Initialized h[l])
∧ f ∈ dom h[l]
∧ ∀o. o=Init (ConsObj (SelHeapObj h l) f (Data v))
=⇒ (ReachableOK o h
∧ ′P o
∧ ′Post (V Undef) (UpdHeap h (TLref (GetLoc l))

(TO ′P Inv o))))

24 2013/7/15

val applyT: targ:typ→ tret:typ
→caller:dyn
→callee:dyn{callee.tag=Abs}
→ this:dyn
→args:dyn{TypeOf args=ORef ϕ Inv}
→ iDST dyn (fun ′Post h⇒

ψtarg→tret callee h
∧ Initialized h[args]
∧ ψtarg h[args]["0"] h
∧ ∀x h′. (ResultIs x (λ d. ψtret d h′)

∧ ∀Z.LocalsOK Z h =⇒ LocalsOK Z h′)
=⇒ ′Post x h′)

val applyAny: targ:typ→ tret:typ
→caller:dyn
→callee:dyn{callee.tag=Abs}
→ this:dyn
→args:dyn{TypeOf args=ORef ϕ Inv}
→ iDST dyn (fun ′Post h⇒

TypeOf callee=WP ψtarg ψtret
∧ Initialized h[args]
∧ ψtarg h[args]["0"] h
∧ ∀x h′. (ResultIs x (λ d. ψtret d h′)

∧ ∀Z.LocalsOK Z h =⇒ LocalsOK Z h′)
=⇒ ′Post x h′)

val mkFunAbs : ′Tx::(dyn⇒ dyn⇒ dyn⇒ (result dyn⇒ heap⇒ E)⇒ heap⇒ E)
→s:string
→ (o:dyn
→ iDST (this:dyn→args:dyn→ iDST dyn (′Tx o args this))

(fun ′Post h⇒ ∀(x:dfun (′Tx o)). ′Post (V x) h))
→ iDST dyn (fun ′Post h⇒

(∀ o code x h′ flds.
(not (o.loc.ref 6∈ dom h)
∧ o.tag=Abs
∧ (h′ = (UpdHeap h o.loc.ref flds))
∧ IsFreshFunObj o h′

∧ (x=Fun ′Tx o code)
=⇒ ′Post (V x) h′)))

let mkLocalInv caller φ () = allocInv caller φ [("0",Num 0)]
let tagEq ′P caller l f s = selectInv ′P caller l f = Str s
type bindTX ′a ′b ′Tx1 ′Tx2 = fun ′Post⇒

(′Tx1 (fun (x:result ′a) (h:heap)⇒
(∀ (e:exn). (x=E e) =⇒ ′Post (E e) h) ∧ (∗ exception ∗)
((x=Err) =⇒ ′Post Err h) ∧ (∗ error ∗)
(∀ (v:′a). (x=V v) =⇒ ′Tx2 v ′Post h))) (∗ normal ∗)

type returnTX ′a (x:′a) = fun ′Post⇒ ′Post (V x)

Figure 7. Signatures of functions used in the translation. For the
authoritative verified implementation, please see JSVerify.fst
on the web. We use a slightly more imprecise spec here for applyAbs
than in our verified implementation, where we give a full spec.
The imprecise spec is sufficient for our metatheory, although the
full spec is useful in verifying clients of JSVerify. We also give a
slightly more general specification of mkFunAbs than in our verified
implementation. This is to enable stating properties on the function
object at allocation time.

25 2013/7/15

	Introduction
	Attacks Type Errors
	ts: a gradually type-safe language within JavaScript
	A statically typed core of functions, datatypes and records
	Dynamically typed fragment
	Runtime reflection over types
	un, the type of the adversary, mediated by wrappers

	Evaluating ts: theory and practice

	An overview of ts
	Gradually securing programs by moving from un to any
	Expressing invariants with assertions over runtime types
	Static Safety
	Dynamic Safety

	Reliable primitive operations
	Statically determined field accesses
	Object.defineProperty
	A brief review of JavaScript's prototype-based objects

	Embedding ts in JavaScript

	Formalizing ts
	Syntax
	Type system and translation
	Static safety
	Dynamic safety
	Memory isolation

	Discussion and related work on gradual typing
	Preservation of object identity
	Space efficiency
	Runtime reflection
	Static safety and eager failures
	Dynamic safety and blame

	Metatheory of the translation
	A review of js and the high-level proof strategy
	Monadic computation types with heap invariants

	Invariants of the translation
	Refined type dynamic
	Translation of types
	@Un@ values
	@HeapInv@, the global heap invariant
	, the heap evolution invariant

	The ts compiler and its safe deployment
	Securely bootstrapping the ts runtime
	Loading scripts with embedded secrets

	Secure web programming with ts
	OWASP CSRFGuard
	Cross-Site Request Forgeries (CSRF)
	CSRF Tokens
	Attacks
	CSRFGuard in ts

	Facebook API
	QueryString encoding
	Cross-Domain Messaging

	Conclusions and prospects
	A formal embedding in js
	A review of js with a partitioned heap model
	Monadic computation types
	Representation of dynamically typed expressions
	Abbreviations and notations

	Representation of runtime type information
	Translation of types
	Heap predicates for source types

	Heap invariants
	@Un@ values
	The @Q@ compartment
	@HeapInv@, the global heap invariant
	, the heap evolution invariant

	The JSVerify API (partial)

