CMSC330 Fall 2010 Quiz \#3 Solutions

1. $(12 \mathrm{pts}) \mathrm{OCaml}$
a. (2 pts) Give the type of the following OCaml expression

$$
\text { fun } x \text { y }->x(y+2) \quad \text { Type }=\left(\text { int }->{ }^{\prime} \mathbf{a}\right)->\text { int }->{ }^{\prime} \mathbf{a}
$$

b. (2 pts) Write an OCaml expression with the following type

$$
\begin{array}{ll}
\text { (bool }->\text { int })->\text { int } \quad \text { Code }= & \text { fun } x->1+(x \text { true }) \\
& \text { fun } x->[1 ;(x \text { true })] \\
& \text { let } f x=1+(x \text { true }) \\
& \text { let } f=[1 ;(x \text { true })]
\end{array}
$$

c. (2 pts) Give the value of the following OCaml expression. If an error exists, describe the error.

$$
\begin{aligned}
& \text { (fun } x->\text { if }(x>0) \text { then } x+1) 1 \quad \text { Value/Error }= \\
& \text { Error }=\text { missing else branch }=\text { unit }(\text {), so type of then branch must match } \\
& \text { Message }=\text { this expression has type int but is here used with type unit }
\end{aligned}
$$

d. (6 pts) Using fold and an anonymous function, write a function attendance which when applied to a list $l s t$ of bools, returns the number of elements of $l s t$ that are true. Example: attendance [true; false; false; true; true] = 3
let attendance $x=$ fold (fun $a b->$ if b then (a+1) else a) $0 x$

$$
\begin{aligned}
& \text { let rec fold fallomatch } 1 \text { with } \\
& {[]->\mathrm{a}} \\
& \text { | (h::t) }->\text { fold } \mathrm{f}(\mathrm{f} \mathrm{a} \mathrm{~h}) \mathrm{t} \\
& \hline
\end{aligned}
$$

2. (8 pts) Context free grammars
a. (2 pts) Write a grammar for $\mathrm{a}^{\mathrm{x}} \mathrm{b}^{\mathrm{y}}$, where $\mathrm{x}=\mathrm{y}+3$ (i.e., exactly 3 more a's than b 's)
$\mathbf{S} \rightarrow$ aaaL $\quad \mathbf{L} \rightarrow$ aLb I epsilon
b. (6 pts) Consider the following grammar ($\mathrm{S}=$ start symbol \& terminals $=[],, ;, \mathbf{e}$):
$\mathrm{S} \rightarrow$ [A] | epsilon
$\mathrm{A} \rightarrow \mathrm{A} ; \mathrm{S} \quad \mathrm{I} \quad \mathrm{e}$
i. (3 pts) Present a derivation for the string $[\mathbf{e} ;[\mathrm{e} ;]]$
$S \Rightarrow[A] \Rightarrow[A ; S] \Rightarrow[e ; S] \Rightarrow[e ;[A]] \Rightarrow[e ;[A ; S]] \Rightarrow[e ;[e ; S]] \Rightarrow[e ;[e ;]] \quad$ leftmost
$S \Rightarrow[A] \Rightarrow[A ; S] \Rightarrow[A ;[A]] \Rightarrow[A ;[A ; S]] \Rightarrow[A ;[A ;]] \Rightarrow[A ;[e ;]] \Rightarrow[e ;[e ;]]$ rightmost
...(many other possible derivations)
ii. (3 pts) Show the parse tree for your derivation
