CMSC330 Fall 2011 Quiz \#3

Name \qquad
Discussion Time (circle one): 9am 10am 11am $\quad 12 \mathrm{pm} \quad 1 \mathrm{pm} \quad 2 \mathrm{pm}$
Do not start this quiz until you are told to do so.
Instructions

- You have 20 minutes for this quiz.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely using 2-3 sentences. Longer answers are not necessary and a penalty may be applied.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.

1. (8 pts) OCaml Types and Type Inference
a. (3 pts) Give the type of the following OCaml expression

$$
\text { fun } x->\left[\begin{array}{ll}
x & 1
\end{array}\right] \quad \text { Type }=
$$

b. (3 pts) Write an OCaml expression with the following type

$$
\text { 'a list }->\text { ' } a \quad \text { Code }=
$$

c. (2 pts) Give the value of the following OCaml expressions. If an error exists, describe the error.

$$
\text { (fun } x->\text { fun } y->x+y) 64 \quad \text { Value }=
$$

let rec map $\mathrm{f} 1=$ match l with	let rec fold $\mathrm{f} \mathrm{a} \mathrm{l}=$ match l with
[]$->[]$	[]$->\mathrm{a}$
$\mid(\mathrm{h}:: \mathrm{t})->(\mathrm{f} \mathrm{h})::(\operatorname{map~f~} \mathrm{t})$	$\mid(\mathrm{h}:: \mathrm{t})->$ fold $\mathrm{f}(\mathrm{f} \mathrm{a} \mathrm{h}) \mathrm{t}$

2. (16 pts) OCaml Programming

Solve the following OCaml programming problems. The following rules apply to both parts of this question. You are allowed to use List.rev (reverses a list) and the (curried) map and fold functions provided, but no other OCaml library functions. Your solution must run in $\mathrm{O}(\mathrm{n})$ time for input lists of length n (note that using append instead of prepend will usually make your algorithm $\mathrm{O}\left(\mathrm{n}^{2}\right)$).
a. (8 pts) Write a curried function findKth which when given a number k and a list lst of int (key, value) pairs, returns the kth value in the list. You may use map or fold if you wish, but it is not required. You may assume lst contains at least k pairs.

Example:
findKth $1[(1,2) ;(5,9) ;(9,3)]=2 \quad / /$ since 2 is 1st value
findKth 2 [(1,2);(5,9);(9,3)] = $9 \quad / /$ since 9 is 2nd value

let rec map $\mathrm{f} \mathrm{l}=$ match l with	let rec fold $\mathrm{f} \mathrm{a} \mathrm{l}=$ match 1 with
[]$->[]$	[]$->\mathrm{a}$
$\mid(\mathrm{h}:: \mathrm{t})->(\mathrm{f} \mathrm{h})::(\operatorname{map~f~} \mathrm{t})$	$\mid(\mathrm{h}:: \mathrm{t})->$ fold $\mathrm{f}(\mathrm{f} \mathrm{a} \mathrm{h}) \mathrm{t}$

b. (8 pts) Using either map or fold and an anonymous function, write a curried function findGreaterThan which when given a number n and a list of ints lst, returns a list of all elements of $l s t$ greater than n (maintaining their relative ordering). You may assume ($\mathrm{x}>\mathrm{y}$) returns true when x is larger than y .

Example:
findGreaterThan $20[33 ; 18 ; 21 ; 19]=[33 ; 21]$
findGreaterThan $65[33 ; 18 ; 21 ; 19]=[]$
3. (6 pts) Context Free Grammars

Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow E+E \mid E * E \\
& E \rightarrow 0|1| n \mid(S)
\end{aligned}
$$

a. (2 pts) What is the set of strings accepted by this grammar?
b. (4 pts) Provide a leftmost derivation of the string " $(\mathrm{n}+1) * \mathrm{n}$ " for this grammar.

