
CMSC330 Fall 2011 Quiz #3

Name

Discussion Time (circle one): 9am 10am 11am 12pm 1pm 2pm

Do not start this quiz until you are told to do so.
Instructions

• You have 20 minutes for this quiz.
• This is a closed book exam. No notes or other aids are allowed.
• Answer essay questions concisely using 2-3 sentences. Longer answers are not

necessary and a penalty may be applied.
• For partial credit, show all of your work and clearly indicate your answers.
• Write neatly. Credit cannot be given for illegible answers.

1. (8 pts) OCaml Types and Type Inference

a. (3 pts) Give the type of the following OCaml expression

fun x -> [x 1] Type =

b. (3 pts) Write an OCaml expression with the following type

‘a list -> ‘a Code =

c. (2 pts) Give the value of the following OCaml expressions. If an error exists,
describe the error.

 (fun x -> fun y -> x+y) 6 4 Value =

2. (16 pts) OCaml Programming

Solve the following OCaml programming problems. The following rules apply to both
parts of this question. You are allowed to use List.rev (reverses a list) and the (curried)
map and fold functions provided, but no other OCaml library functions. Your solution
must run in O(n) time for input lists of length n (note that using append instead of
prepend will usually make your algorithm O(n2)).

a. (8 pts) Write a curried function findKth which when given a number k and a list

lst of int (key, value) pairs, returns the kth value in the list. You may use map or
fold if you wish, but it is not required. You may assume lst contains at least k
pairs.

 Example:

 findKth 1 [(1,2);(5,9);(9,3)] = 2 // since 2 is 1st value
 findKth 2 [(1,2);(5,9);(9,3)] = 9 // since 9 is 2nd value

let rec map f l = match l with
 [] -> []
| (h::t) -> (f h)::(map f t)

let rec fold f a l = match l with
 [] -> a
| (h::t) -> fold f (f a h) t

b. (8 pts) Using either map or fold and an anonymous function, write a curried
function findGreaterThan which when given a number n and a list of ints lst,
returns a list of all elements of lst greater than n (maintaining their relative
ordering). You may assume (x > y) returns true when x is larger than y.

 Example:
 findGreaterThan 20 [33;18;21;19] = [33;21]
 findGreaterThan 65 [33;18;21;19] = []

let rec map f l = match l with
 [] -> []
| (h::t) -> (f h)::(map f t)

let rec fold f a l = match l with
 [] -> a
| (h::t) -> fold f (f a h) t

3. (6 pts) Context Free Grammars
 Consider the following grammar:
 S � E+E | E*E
 E � 0 | 1 | n | (S)

a. (2 pts) What is the set of strings accepted by this grammar?

b. (4 pts) Provide a leftmost derivation of the string “(n+1)*n” for this grammar.

