CMSC330 Fall 2010 Quiz \#3

Name

Discussion Time (circle one): 9am 10am 11am 12pm 1pm 2pm

Instructions

- Do not start this test until you are told to do so!
- You have 15 minutes for this quiz.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.

1. $(12 \mathrm{pts}) \mathrm{OCaml}$
a. (2 pts) Give the type of the following OCaml expression

$$
\text { fun } x \text { y }->x(y+2) \quad \text { Type }=
$$

b. (2 pts) Write an OCaml expression with the following type

$$
\text { (bool -> int) -> int } \quad \text { Code }=
$$

c. (2 pts) Give the value of the following OCaml expression. If an error exists, describe the error.

$$
\text { (fun } x->\text { if }(x>0) \text { then } x+1) 1 \quad \text { Value/Error }=
$$

d. (6 pts) Using fold and an anonymous function, write a function attendance which when applied to a list $l s t$ of bools, returns the number of elements of $l s t$ that are true. Example: attendance [true; false; false; true; true] = 3

```
let rec fold f a l = match 1 with
    [] -> a
    | (h::t) -> fold f (f a h) t
```

2. (8 pts) Context free grammars
a. (2 pts) Write a grammar for $\mathrm{a}^{\mathrm{x}} \mathrm{b}^{\mathrm{y}}$, where $\mathrm{x}=\mathrm{y}+3$ (i.e., exactly 3 more a 's than b 's)
b. (6 pts) Consider the following grammar
(where $\mathrm{S}=$ start symbol and terminals $=[],, \mathbf{;}, \mathbf{e}$):

$$
\begin{array}{l|l}
\mathrm{S} \rightarrow[\mathrm{~A}] & \text { epsilon } \\
\mathrm{A} \rightarrow \mathrm{~A} ; \mathrm{S} & \mathrm{I}
\end{array}
$$

i. (3 pts) Present a derivation for the string $[\mathbf{e} ;[\mathbf{e} ;]]$
ii. (3 pts) Show the parse tree for your derivation

