CMSC330 Spring 2014 Quiz #2

Name ______

Discussion Time	10am	11am	noon	1pm	2pm
TA Name (circle):	Tammy	Tammy	Tammy	Daniel	Daniel
	-	Ilse	Casey	Ian	

Instructions

- Do not start this test until you are told to do so!
- You have 15 minutes for this quiz.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.
- 1. (8 pts) OCaml Types and Type Inference
 - a. (2 pts) Give the type of the following OCaml expression

$$fun x y \rightarrow (y + 2, x) Type =$$

b. (3 pts) Write an OCaml expression with the following type

(float list -> float -> 'a) -> 'a Code =

c. (3 pts) Give the value of the following OCaml expression. If an error exists, describe the error. The function fold is given for problem 2.

fold ((fun x y z \rightarrow x + (y * z)) 2) 1 [1; 2; 3];; Value =

2. (8 pts) OCaml Programming

Using either map or fold and an anonymous function, write a curried function called **divisible** which when given a number n and a list of ints *lst*, returns a list of all elements of *lst* that are divisible by n (maintaining their relative ordering). You are allowed to use List.rev (reverses a list) and the (curried) map and fold functions provided, but no other OCaml library functions. **Hint:** x is divisible by y iff (x mod y = 0) is true.

let rec map f l = match l with	let rec fold f a l = match l with
[] -> []	[] -> a
(h::t) -> (f h)::(map f t)	(h::t) -> fold f (f a h) t

Example:

divisible 4 [3;16;24]	// returns [16; 24]
divisible 3 [4;1;11]	// returns []
divisible 3 []	// returns []

3. (4 pts) Context Free Grammars

Consider the following grammar:

 $S \rightarrow aSc \mid b \mid epsilon$

a. (2 pts) Describe the set of strings accepted by this grammar.

b. (2 pts) Draw a parse tree for the string aabcc.