CMSC 330, Spring 2018 Quiz 2

Name \qquad
Discussion Time (circle one) 10am $11 \mathrm{am} \quad 12 \mathrm{pm} \quad 1 \mathrm{pm} \quad 2 \mathrm{pm} \quad 3 \mathrm{pm}$
Discussion TA (circle one) BT Daniel Chris Alex Derek Pei-Jo Akbar Justin L. Tal Shriraj Cameron Eric Kesha Kameron Michael S. Michael P.

Instructions

- Do not start this quiz until you are told to do so.
- You have 15 minutes for this quiz.
- This is a closed book quiz. No notes or other aids are allowed.
- For partial credit, show all your work and clearly indicate your answers.

1. (5 points) Using the rules given below, show

$$
1 * 2+3 \Rightarrow 5
$$

In the rules, n is a metavariable that refers to an integer, while e is a metavariable that refers to an expression, whose form is according to the following grammar:

$$
e::=n|e+e| e * e
$$

Here are the rules:

$$
\begin{gathered}
\frac{}{n \Rightarrow n} \quad \begin{array}{l}
e_{1} \Rightarrow n_{1} e_{2} \Rightarrow n_{2} n_{3} i s n_{1}+n_{2} \\
e_{1}+e_{2} \Rightarrow n_{3} \\
e_{1} * e_{2} \Rightarrow n_{3} \\
1 \Rightarrow 1 \quad 2 \Rightarrow 2 \quad 2 \text { is } n_{1} * n_{2} \\
1 * 2 \Rightarrow 2
\end{array} \quad 3 \Rightarrow 3 \quad 5 \quad \text { is } 2+3
\end{gathered}
$$

2. (7 points) Using the rules given below, show:

$$
\text { let } y=1 \text { in let } x=3 \text { in } x \Rightarrow 3
$$

In the rules, x is a metavariable that refers to an identifier (variable), n is a metavariable that refers to an integer, while e is a metavariable that refers to an expression, and A is a metavariable that refers to an environment. Grammars for the latter two are as follows:

$$
\begin{aligned}
& e::=x|n| \text { let } x=e \text { in } e \\
& A::=\cdot \mid A, x: n
\end{aligned}
$$

In the above, • represents an empty environment, while $A, x: n$ is the environment that extends A with a mapping from x to n (overriding any other mapping that might already be in A for x).

$$
\begin{array}{cc}
& \begin{array}{l}
A(x)=n \\
\\
A ; n \Rightarrow n \Rightarrow n
\end{array} \\
& \\
A ; 1 \Rightarrow 1 & \frac{A, x: 1 ; 3 \Rightarrow 3}{} \frac{A ; e_{1} \Rightarrow v_{1} A, x: v_{1} ; e_{2} \Rightarrow v_{2}}{A, y=e_{1} \text { in } e_{2} \Rightarrow v_{2}} \\
& A ; \text { let } y=1 \text { in let } x=3 \text { in } x \Rightarrow 3
\end{array}
$$

3. (8 points) Give a Finite Automata that accepts a string on alphabet 0,1 if and only if it has an even number of 1 's and exactly one zero.

