
CMSC 330 Spring 2016 Quiz #2

Name:
Discussion Time: 10am 11am 12pm 1pm 2pm 3pm
TA Name (Circle): Adam Anshul Austin Ayman Damien

Daniel Jason Michael Patrick William

Instructions:

• Do not start this test until you are told to do so!

• You have 15 minutes for this quiz.

• This is a closed book exam. No notes or other aids are allowed.

• For partial credit, show all your work and clearly indicate your answers.

• Write neatly and erase cleanly. Credit cannot be given for illegible answers.

• Code below defines map, fold left and fold right functions and is given for reference.

l et map f xs = match xs with
[] −> []
| (x : : t l) −> (f x) : : (map f t l)

l et f o l d l e f t f a xs = match xs with
[] −> a
| (x : : t l) −> f o l d l e f t f (f a x) t l

l et f o l d r i g h t f xs a = match xs with
[] −> a
| (x : : t l) −> f x (f o l d r i g h t f t l a)

1. Give the type of following expressions: 2 pts

a) ([1;3;5],4) int list * int

b) fun x y −> x@y ’a list ->’a list ->’a list

2. Give an ocaml expression which matches the following types: 3 pts

a) int −> int −> bool fun a b ->a + b >0

b) int list −> ’a −> ’a

fun l s t x −> match l s t with
| [] −> x
| h : : t −> i f h > 0 then x else x ; ;

c) (’a −> ’b −> ’c) −> ’b −> ’a −> ’c fun f x y ->f y x

1

3. removeAssoc: Association Lists are a simple map data structure used in OCaml. An as-
sociation list is a list of tuples, where the first member of the tuple is the key, and the
second member of the tuple is the value. Write a function which, given an association list
and a value, removes every association for that value. The type for removeAssoc should be
(a ∗ b) list −> b −> (a ∗ b) list . E.g., removeAssoc [(1, 2); (2, 2); (1, 3)] 2
evaluates to [(1, 3)]. You are not allowed to use for and while loops (0 credit) and
there is +1 extra credit for using fold. 6 pts

let rec remove assoc l v = match l with
| [] −> []
| (key , va l) : : t −> i f va l = v then remove assoc t v

else (key , va l) : : (remove assoc (t v))

l et remove assoc l v =
l et rec r emove as soc he lpe r l v acc = match l with
| [] −> acc
| (key , va l) : : t −> i f v = va l then r emove as soc he lpe r t v acc

else r emove as soc he lpe r t v (key , va l) : : acc
in r emove as soc he lpe r l v []

4 pts

4. Write a function isEven using map that takes one argument, a list of ints, and outputs a
list of strings: even if the number is even, odd if the number is odd. Remember that 0 is
an even number. You must use map and an anonymous function to receive full credit. E.g.,
isEven [1;2;3;4] evaluates to [”odd”;”even”;”odd”;”even”]. 4pts

let i s e v e n l = map (fun x −> i f x mod 2 = 0 then ”even” else ”odd”)

2

