CMSC 330 Fall 2016 Quiz \#2

Name
Discussion Time (circle one) 10am $11 \mathrm{am} \quad 12$ noon $\quad 1 \mathrm{pm} \quad 2 \mathrm{pm} \quad 3 \mathrm{pm}$
Discussion TA (circle one) Alex Austin Ayman Brian Damien Daniel K. Daniel P. Greg Tammy Tim Vitung Will K.

Instructions

- Do not start this quiz until you are told to do so.
- You have 15 minutes for this quiz.
- This is a closed book quiz. No notes or other aids are allowed.
- For partial credit, show all of your work and clearly indicate your answers.

1. (4 points) Without using explicit type declarations, write OCaml expressions of type:
a. 'a list -> 'a -> 'b -> 'a * 'b
b. int -> string -> int * string -> bool
2. (4 points) Give the type of d in each of the following OCaml expressions:
a. let $d=((1,2),[3 ; 0],[])$
b. let $d=($ fun $x y z \rightarrow(x+. y)>z) 3.14$
3. (5 points) Implement a function insert_at_n ('a list -> 'a -> int -> 'a list), which will insert an element at postion n in a list. If n is greater than the length of list, then insert the element to the end. The list's indices start at 0 , and you can assume that n is a nonnegative integer. You can write helper functions.
```
let rec insert_at_n lst ele n =
```

4. (7 points) Consider the following OCaml variant type definition for a binary tree:
type binary_tree =
Nil
| Leaf of int
| Node of int * binary_tree * binary_tree
Write a function called leaf_sum that takes as input a binary_tree and returns the sum of all of the values of the leaves in the binary_tree. You can write helper functions.
```
let rec leaf_sum tr =
```

