
CMSC 330, Fall 2019 — Quiz 1, OCaml

Name

Teaching Assistant

Barath Cameron Olasubomi Vincent Pavan Michael Cliff Shruti Salma Shilpa

Mihailo Arun Danielle Noah Chris Liam Suteerth Sabrina

Instructions

• Do not start this quiz until you are told to do so.

• You have 15 minutes for this quiz.

• This is a closed book quiz. No notes or other aids are allowed.

• For partial credit, show all your work and clearly indicate your answers.

1. [6 pts] Give the type of the following OCaml expression. If there is a type error, explain why the expression

would result in a type error.

(a) fun x -> x + 3

(b) []::[]::[]

(c) fun x y z -> if x y > x z then (x y) else (z *. 5.0)

Solution.

(a) int -> int

(b) ’a list list

(c) (float -> float) -> float -> float -> float

2. [6 pts] Give an OCaml expression of the following type without using type annotations.

(a) int -> float -> float

(b) (int -> int -> int) -> float -> int

Solution.

(a) fun x y -> if x = 3 then y else y *. 5.0

(b) fun a b -> if b = 3.0 then (a 3 3) else 1

1

For grading for this part, give one point for each argument and one point for correct return type. Mi-

nor/major syntax errors should be -1 and -2 respectively.

For the below question, you may use the following functions.

let rec map f l = let rec foldl f acc l =

match l with match l with

| [] -> [] | [] -> acc

| h :: t -> (f h) :: (map f t) | h :: t -> foldl f (f acc h) t

let rec foldr f l acc =

match l with

| [] -> acc

| h::t -> f h (foldr f t acc)

3. [8 pts] Write a function check_matrix which applied to lst, an argument of type ’a list list, returns

whether lst is a well-formed matrix, meaning that the number of elements in each sub-list is the same.

Note that the matrix does not have to be a ”square matrix,” so the number of rows and columns do not

have to be equal. check_matrix should return true if lst is empty.

You may not define the following function as recursive. You also may not define a recursive helper

function, but you can define as many non-recursive functions as you would like.

Solution.

let check_matrix lst =

let len lst = foldl (fun a x -> a + 1) 0 lst in

let check lst value = foldl (fun acc x -> if x = value then acc else false) true lst in

let m = map len lst in

match m with

| [] -> true

| h::t -> check t h

+3 for having a valid outline of a plan for this problem (check length of each sub-array and check if they’re

all equal)

+2 for some way of counting length of a single sub-array

+3 for making sure all sub-arrays have same length

Subtract points for errors depending on severity

2

