
CMSC 330, Practice Problems 2 (SOLUTIONS) 

 
 

1. Regular expressions and languages 
a. From the perspective of formal language theory, what is a language? 

Set of strings 
b. Given the language A = {“aa”, ”c”} and B = {“b”}, what is the language AB? 

{“aab”, “cb”} 
c. Given the language A = {“aa”, ”c”}, what is the language A0? 

{ ε } 
d. Given the language A = {“aa”, ”c”}, what is the language A2? 

{ “aaaa”, “cc”,  “aac”, “caa” } 
e. Given the language A = {“aa”, ”c”}, what is the language A*? 

{ ε, “aa”, “c”, “aaaa”, “cc”,  “aac”, “caa”, “aaaaaa” … } 
f. Give a regular expression for all binary numbers including the substring “101”. 

(0|1)*101(0|1)* 
g. Give a regular expression for all binary numbers with an even number of 1’s. 

(0*10*1)*0*  or  0*(10*10*)* 
h. Give a regular expression for all binary numbers that don’t include “000”. 

(01 | 001 | 1)*(0 | 00 | ε) 
 

2. Finite automata 
a. When does a NFA accept a string? 

If there any path for the string that ends at a final state for the NFA 
b. How long could it take to reduce a NFA with n states and t transitions to a 

DFA? 
2

n
 

c. Give a NFA that only accepts binary numbers including the substring “101”. 
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d. Give a NFA that only accepts binary numbers that include either “00” or “11”. 
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e. Give a NFA that only accepts binary numbers that include both “00” and “11”. 
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f. What language (or set of strings) is accepted by the following NFA? 

 
(010)*(0|ε) 

g. Compute the ε-closure of the start state for each of the NFA above. 

• For NFA in (c)  ε–closure(1) = {1,2} 

• For NFA in (d)  ε–closure(1) = {1,2,5} 

• For NFA in (e)  ε–closure(1) = {1,2,8} 

• For NFA in (f)  ε–closure(A) = {A,F} 



h. Give a DFA that only accepts binary numbers with an odd number of 1’s. 
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i. Give a DFA that only accepts binary numbers that include “000”. 
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j. Give a DFA that only accepts binary numbers that don’t include “000”. 
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k. What language (or set of strings) is accepted by the following DFA? 

 
Described as a list of strings:  

{ “01”, “111”, “0011”, “01111”, “10”, “000”, “0110”, “1111”, “00111”, 

“011111”…}  

where all underlined strings may have any number of 0s appended 

 

Described as a regular expression:  01 | (1 |  00 | 011)(11 | (0 | 111)0*) 

 

Explanation (for each underlined portion of RE) 

• 01 | (1 |  00 | 011)(11 | (0 | 111)0*) from state 1 to 5 and accepts 

• 01 | (1 |  00 | 011)(11 | (0 | 111)0*) from state 1 to 2, then… 

• 01 | (1 |  00 | 011)(11 | (0 | 111)0*)    from state 2 to 7 and accepts 

• 01 | (1 |  00 | 011)(11 | (0 | 111)0*)    from state 2 to 3, then… 

• 01 | (1 |  00 | 011)(11 | (0 | 111)0*)       accepts w/ 0 or more 0’s 
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l. For each regular expression: 1*, (0|01)*0 
a) Reduce the RE to an NFA using the algorithm described in class. 
b) Reduce the resulting NFA to a DFA using the subset algorithm. 
c) Show whether the DFA accepts / rejects the strings “1”, “11”, “101” 
d) Minimize the resulting DFA using Hopcroft reduction 
e) Are any 2 of the minimized DFA identical? 

 
1* → NFA → DFA 
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Accept / reject 

• “1” {3,1,4} → {2,4,3,1} accept 

• “11” {3,1,4} → {2,4,3,1} → {2,4,3,1} accept 

• “101”  {3,1,4} → {2,4,3,1} → reject 
 

Minimized DFA 
 Initial partitions:  accept ={ {3,1,4},  {2,4,3,1} } = P1,  
    nonfinal = Ø  

� move({3,1,4},  1) → P1 
� move({2,4,3,1},  1) → P1 

No need to split P1, minimization done. After cleanup, minimal DFA is 
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(0|01)*0 → NFA  
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(0|01)*0 → NFA → DFA 
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Accept / reject 

• “1” {9,7,1,3,10,11} → reject 

• “11” {9,7,1,3,10,11} → reject 

• “101”  {9,7,1,3,10,11} → reject 
 

Minimized DFA 
 Initial partitions:  accept ={ {2,4…}} = P1,  
    nonfinal ={ {9,7…}, {6,8…}} = P2 

� move({9,7…},  0) → P1 
� move({6,8…},  0) → P1 
� move({9,7…},  1) → reject 
� move({6,8…},  1) → reject 

No need to split P2, minimization done. After cleanup, minimal DFA 
(different from previous minimal DFA) is 
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