CMSC 330, Practice Problems 2 (SOLUTIONS)

1. Regular expressions and languages
a. From the perspective of formal language theory, what is a language?

Set of strings
b. Given the language $A=\{" a a ", " c "\}$ and $B=\{" b "\}$, what is the language $A B$?
\{"aab", "cb" $\}$
c. Given the language $A=\{" a a ", " c "\}$, what is the language A^{0} ?
$\{\varepsilon\}$
d. Given the language $A=\{" a a ", " c "\}$, what is the language A^{2} ?
\{ "аааа", "cc", "aac", "саа" \}
e. Given the language $A=\{" a a ", " c "\}$, what is the language $A *$?
\{ ε, "aa", "c", "aааа", "cc", "аac", "саа", "аааааа" ... \}
f. Give a regular expression for all binary numbers including the substring " 101 ".
(0|1)*101(0|1)*
g. Give a regular expression for all binary numbers with an even number of 1 's.
$\left(0 * 10^{*} 1\right)^{*} 0^{*}$ or $0 *\left(10^{*} 10^{*}\right)^{*}$
h. Give a regular expression for all binary numbers that don't include " 000 ".
$(01|001| 1) *(0|00| \varepsilon)$
2. Finite automata
a. When does a NFA accept a string?

If there any path for the string that ends at a final state for the NFA
b. How long could it take to reduce a NFA with n states and t transitions to a DFA?
$2^{\text {n }}$
c. Give a NFA that only accepts binary numbers including the substring " 101 ".

d. Give a NFA that only accepts binary numbers that include either " 00 " or " 11 ".

e. Give a NFA that only accepts binary numbers that include both " 00 " and " 11 ".

f. What language (or set of strings) is accepted by the following NFA?

(010)*(0|ع)
g. Compute the ε-closure of the start state for each of the NFA above.

- For NFA in (c) ε-closure(1) $=\{1,2\}$
- For NFA in (d) ε-closure(1) $=\{1,2,5\}$
- For NFA in (e) ε-closure $(1)=\{1,2,8\}$
- For NFA in (f) ε-closure $(A)=\{\mathbf{A}, \mathbf{F}\}$
h. Give a DFA that only accepts binary numbers with an odd number of 1 's.

i. Give a DFA that only accepts binary numbers that include " 000 ".

j. Give a DFA that only accepts binary numbers that don't include " 000 ".

k. What language (or set of strings) is accepted by the following DFA?

Described as a list of strings:
\{ "01", "111", "0011", "01111", "10", "000", "0110"," ${ }^{1111 ", " 00111 ", ~}$ "011111"...\}
where all underlined strings may have any number of 0s appended
Described as a regular expression: $01 \mid(1|00| 011)\left(11 \mid(0 \mid 111) 0^{*}\right)$
Explanation (for each underlined portion of RE)

- $01 \mid(1|00| 011)\left(11 \mid(0 \mid 111) 0^{*}\right)$ from state 1 to 5 and accepts
- $01 \mid \underline{(1|00| 011)\left(11 \mid(0 \mid 111) 0^{*}\right)}$ from state 1 to 2 , then...
- $01 \mid(1|00| 011)\left(11 \mid(0 \mid 111) 0^{*}\right) \quad$ from state 2 to 7 and accepts
- $01 \mid(1|00| 011)\left(11 \mid \underline{(0 \mid 111)} 0^{*}\right)$ from state 2 to 3 , then...
- $01 \mid(1|00| 011)\left(11 \mid(0 \mid 111) 0^{*}\right) \quad$ accepts w/ 0 or more 0 's

1. For each regular expression: $1^{*},(0 \mid 01)^{*} 0$
a) Reduce the RE to an NFA using the algorithm described in class.
b) Reduce the resulting NFA to a DFA using the subset algorithm.
c) Show whether the DFA accepts / rejects the strings " 1 ", " 11 ", " 101 "
d) Minimize the resulting DFA using Hopcroft reduction
e) Are any 2 of the minimized DFA identical?
$1^{*} \rightarrow \mathrm{NFA} \rightarrow \mathrm{DFA}$

ε

Accept / reject

- " 1 " $\{3,1,4\} \rightarrow\{2,4,3,1\}$ accept
- " 11 " $\{3,1,4\} \rightarrow\{2,4,3,1\} \rightarrow\{2,4,3,1\}$ accept
- "101" $\{3,1,4\} \rightarrow\{2,4,3,1\} \rightarrow$ reject

Minimized DFA
Initial partitions: \quad accept $=\{\{3,1,4\},\{2,4,3,1\}\}=P 1$, nonfinal $=\varnothing$

- $\operatorname{move}(\{3,1,4\}, 1) \rightarrow \mathrm{P} 1$
- move(\{2,4,3,1\}, 1) \rightarrow P1

No need to split P1, minimization done. After cleanup, minimal DFA is

$(0101) * 0 \rightarrow$ NFA \rightarrow DFA

Accept / reject

- "1"	$\{9,7,1,3,10,11\} \rightarrow$ reject
- "11"	$\{9,7,1,3,10,11\} \rightarrow$ reject
- "101"	$\{9,7,1,3,10,11\} \rightarrow$ reject

Minimized DFA
Initial partitions: \quad accept $=\{\{2,4 \ldots\}\}=\mathrm{P} 1$,
nonfinal $=\{\{9,7 \ldots\},\{6,8 \ldots\}\}=\mathrm{P} 2$

- move $(\{9,7 \ldots\}, 0) \rightarrow \mathrm{P} 1$
- move(\{6,8...\}, 0) \rightarrow P1
- move $(\{9,7 \ldots\}, 1) \rightarrow$ reject
- move $(\{6,8 \ldots\}, 1) \rightarrow$ reject

No need to split P2, minimization done. After cleanup, minimal DFA (different from previous minimal DFA) is

