
CMSC 330, Practice Problems 2 (SOLUTIONS)

1. Regular expressions and languages
a. From the perspective of formal language theory, what is a language?

Set of strings
b. Given the language A = {“aa”, ”c”} and B = {“b”}, what is the language AB?

{“aab”, “cb”}
c. Given the language A = {“aa”, ”c”}, what is the language A0?

{ ε }
d. Given the language A = {“aa”, ”c”}, what is the language A2?

{ “aaaa”, “cc”, “aac”, “caa” }
e. Given the language A = {“aa”, ”c”}, what is the language A*?

{ ε, “aa”, “c”, “aaaa”, “cc”, “aac”, “caa”, “aaaaaa” … }
f. Give a regular expression for all binary numbers including the substring “101”.

(0|1)*101(0|1)*
g. Give a regular expression for all binary numbers with an even number of 1’s.

(0*10*1)*0* or 0*(10*10*)*
h. Give a regular expression for all binary numbers that don’t include “000”.

(01 | 001 | 1)*(0 | 00 | ε)

2. Finite automata
a. When does a NFA accept a string?

If there any path for the string that ends at a final state for the NFA
b. How long could it take to reduce a NFA with n states and t transitions to a

DFA?
2

n

c. Give a NFA that only accepts binary numbers including the substring “101”.

εεεε 1

2 3 64 5

0 1

1

0,1

εεεε

0,1

εεεε 1

2 3 664 5

0 1

1

0,1

εεεε

0,1

d. Give a NFA that only accepts binary numbers that include either “00” or “11”.

εεεε

0

2 3

8

4

0

1

0,1

εεεε

0,1

1

5 6 7

1
εεεε

εεεε

εεεε

0

2 3

88

4

0

1

0,1

εεεε

0,1

1

5 6 7

1
εεεε

εεεε

e. Give a NFA that only accepts binary numbers that include both “00” and “11”.

εεεε

0

2 3

7

6

0

1

0,1

εεεε

0,1

1

8 9 12

1
εεεε

εεεε

1

4 5

1

0

10 11

0

0,1

0,1

εεεε

0

2 3

77

6

0

1

0,1

εεεε

0,1

1

8 9 12

1
εεεε

εεεε

1

4 5

1

0

10 11

0

0,1

0,1

f. What language (or set of strings) is accepted by the following NFA?

(010)*(0|ε)

g. Compute the ε-closure of the start state for each of the NFA above.

• For NFA in (c) ε–closure(1) = {1,2}

• For NFA in (d) ε–closure(1) = {1,2,5}

• For NFA in (e) ε–closure(1) = {1,2,8}

• For NFA in (f) ε–closure(A) = {A,F}

h. Give a DFA that only accepts binary numbers with an odd number of 1’s.

1

1

0

1

0

2

1

1

0

1

0

22

i. Give a DFA that only accepts binary numbers that include “000”.

0

1 2

0 0

3

0,1

4

1 1

1

0

1 2

0 0

3

0,1

44

1 1

1

j. Give a DFA that only accepts binary numbers that don’t include “000”.

0

1 2

0 0

3

0,1

4

1 1

0

1 2

0

3

1 1

1 1

0

1 2

0 0

3

0,1

4

1 1

0

1 2

0

3

1 1

1 1

k. What language (or set of strings) is accepted by the following DFA?

Described as a list of strings:

{ “01”, “111”, “0011”, “01111”, “10”, “000”, “0110”, “1111”, “00111”,

“011111”…}

where all underlined strings may have any number of 0s appended

Described as a regular expression: 01 | (1 | 00 | 011)(11 | (0 | 111)0*)

Explanation (for each underlined portion of RE)

• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 1 to 5 and accepts

• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 1 to 2, then…

• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 2 to 7 and accepts

• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) from state 2 to 3, then…

• 01 | (1 | 00 | 011)(11 | (0 | 111)0*) accepts w/ 0 or more 0’s

1 2 3

7 6

9

8

4 5

l. For each regular expression: 1*, (0|01)*0
a) Reduce the RE to an NFA using the algorithm described in class.
b) Reduce the resulting NFA to a DFA using the subset algorithm.
c) Show whether the DFA accepts / rejects the strings “1”, “11”, “101”
d) Minimize the resulting DFA using Hopcroft reduction
e) Are any 2 of the minimized DFA identical?

1* → NFA → DFA

εεεε

1 2

εεεε

3
εεεε

εεεε

1
4

3,

1,4

2,4,

3,1

1

1

εεεε

1 2

εεεε

3
εεεε

εεεε

1
4

εεεε

1 2

εεεε

3
εεεε

εεεε

1
44

3,

1,4

2,4,

3,1

1

1

3,

1,4

2,4,

3,1

1

1

Accept / reject

• “1” {3,1,4} → {2,4,3,1} accept

• “11” {3,1,4} → {2,4,3,1} → {2,4,3,1} accept

• “101” {3,1,4} → {2,4,3,1} → reject

Minimized DFA
 Initial partitions: accept ={ {3,1,4}, {2,4,3,1} } = P1,
 nonfinal = Ø

� move({3,1,4}, 1) → P1
� move({2,4,3,1}, 1) → P1

No need to split P1, minimization done. After cleanup, minimal DFA is

3,

1,4

2,4,

3,1

1

1
P1

P1

1

3,

1,4

2,4,

3,1

1

1

3,

1,4

2,4,

3,1

1

1
P1

P1

1

P1

1

(0|01)*0 → NFA

εεεε

εεεε

0

3 4

0

1 2

7 8

εεεε

εεεε εεεε

9 12

εεεε

εεεε

εεεε

5 6

1εεεε

0
10 11

εεεεεεεε

εεεε

0

3 4

0

1 2

7 8

εεεε

εεεε εεεε

9 12

εεεε

εεεε

εεεε

5 6

1εεεε

0
10 11

εεεε

(0|01)*0 → NFA → DFA

9,7,1,

3,10,11

2,4,12,

8,10,11,9,

7,1,3,5

6,8,10,

11,9,7,

1,3

0

0

1

0

9,7,1,

3,10,11

2,4,12,

8,10,11,9,

7,1,3,5

6,8,10,

11,9,7,

1,3

0

0

1

0

Accept / reject

• “1” {9,7,1,3,10,11} → reject

• “11” {9,7,1,3,10,11} → reject

• “101” {9,7,1,3,10,11} → reject

Minimized DFA
 Initial partitions: accept ={ {2,4…}} = P1,
 nonfinal ={ {9,7…}, {6,8…}} = P2

� move({9,7…}, 0) → P1
� move({6,8…}, 0) → P1
� move({9,7…}, 1) → reject
� move({6,8…}, 1) → reject

No need to split P2, minimization done. After cleanup, minimal DFA
(different from previous minimal DFA) is

9,7,1,

3,10,11

2,4,12,

8,10,11,9,

7,1,3,5

6,8,10,

11,9,7,

1,3

0

0

1

0P1

P1

P2

P2

0

0

1

9,7,1,

3,10,11

2,4,12,

8,10,11,9,

7,1,3,5

6,8,10,

11,9,7,

1,3

0

0

1

0P1

P1

P2

P2

0

0

1

