
CMSC330 Spring 2019 Midterm 2
11:00am / 12:15pm / 2:00pm

Name (PRINT YOUR NAME as it appears on gradescope):

 __

Discussion Time (circle one) 10am 11am 12pm 1pm 2pm 3pm

Instructions

● Do not start this test until you are told to do so!
● You have 75 minutes to take this midterm.
● This exam has a total of 100 points, so allocate 45 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

 Problem Score

1 PL Concepts /13

2 Finite Automata /31

3 Context Free Grammars /17

4 Parsing /16

5 Operational Semantics /10

6 Lambda Calculus /13

 Total /100

1

1. PL concepts [13 pts]
A) [5 pts] Circle true or false for each of the following 5 questions (1 point each)

True / False In OCaml, if an exception is thrown, then the executing program will terminate

True / False OCaml variables are immutable

True / False If x and y are aliases, changing the content in the location referenced by x will
cause it to no longer be an alias of y

True / False If a lambda calculus expression reduces to a beta-normal form using
call-by-value order, then it will also do so using call-by-name

True / False You can create a cyclic data structure in OCaml (i.e., one that points to itself)

B) [4 pts] Consider the following OCaml definitions for f, g, and h (each is a int -> int function).

let f z = let g = let h =
 let y = ref 0 in let x = ref 1 in (fun z -> let x = z+1 in

 y := !y + z; (fun z -> let _ = (print_int z,print_int x) in

 !y x := !x + 1; 0)

 !x+z)

 Answer:

Which of these functions is not referentially transparent?

Which function’s execution outcome depends on OCaml’s evaluation order

What is a side effect carried out by at least one of the functions?

Which function’s execution is only interesting/useful because of its side
effects, not what it returns?

C) [4 pts] Check the box next to each function that is tail recursive (they all type check and run properly).

⎕ let rec sum lst =
 match lst with
 [] -> 0
 | h::t-> h + sum t

⎕ let rec max lst r =
 match lst with
 [] -> r
 | h::t ->
 if r>h then max t r
 else max t h

⎕ let rec pow2 x =
 if x = 1 then true
 else
 let y = x/2 in
 if y*2 = x then pow2 y
 else false

⎕ let rec prod lst =
 match lst with
 [] -> 1
 | h::t -> (prod t) * h

2

2. Finite Automata [31 pts]
A) [4 pts] Circle true or false for each of the following 4 questions (1 point each)

True / False NFAs are more expressive than DFAs (i.e., they can describe more languages)

True / False Every CFG has an equivalent NFA

True / False Every formal language has a unique DFA that generates it

True / False Regexes are more expressive (can generate more languages) than DFAs

B) [6 pts] For each of the following statements, check the DFA box if it’s true for DFAs, and the NFA box
for NFAs. You may check neither or both boxes.

⎕DFA ⎕NFA Can transition to multiple states at once with a symbol

⎕DFA ⎕NFA Can have epsilon transitions

⎕DFA ⎕NFA Can have multiple final states

⎕DFA ⎕NFA Always has at least one final state

⎕DFA ⎕NFA Easy to translate directly from a regular expression

⎕DFA ⎕NFA Can accept an empty string

C) [6 pts] Draw a DFA that is equivalent to the following NFA.

3

D) [4 pts] Circle any of the following strings that would be accepted by the nfa from the previous problem.

aba abbbbba aa abaa

E) [6 pts] Draw an NFA that accepts the same language as the regex (a*b)|(cd). Here are some
examples this NFA will accept: b, ab, cd, aab, aaaaab

F) [5 pts] Draw a DFA that accepts strings of the form anbn where 0 ≤ n ≤ 3 over Σ = { a,b }

4

3. Context Free Grammars [17 pts]
A) [4 pts] Check the box next to the strings that are accepted by the following CFG. Note that here and
below all nonterminals are in italics (like T and W) and terminals are in bold (like a, b).

T → aW | b
W → b | bT | aW

⎕ abba ⎕ aaabb ⎕ baa ⎕ aab

B) [5 pts] Create a CFG for the language of all strings of the form nxfzay where x ≥ y ≥ 0 and z > 0.
Example strings in the language are nfa, f, nnnfaa. Example strings not in the language are a, n, fa,
nfaa.

C) [4 pts] Rewrite the following grammar so that it can be parsed by a recursive descent parser. Note that
parentheses and commas, below, are terminals (along with r, u, and o).

S → A)
A → A,r | A,u | (o

D) [4 pts] The following CFG is ambiguous. Rewrite the grammar to remove the ambiguity. Note that
minus sign is a terminal (along with 1, 2, and 3).

E → E - E | N
N → 1 | 2 | 3

5

4. Parsing and Scanning [16 pts]
A) [3 pts] Recall the scanner for SmallC. Suppose, when you tokenize the variable “for2”, your tokenizer
returned [Tok_ID("for");Tok_Int(2)] instead of [Tok_ID("for2")]. How would you fix this? (Write
1-2 sentences only.)

B) [5 pts] Consider the following CFG. Compute the first sets for
each nonterminal.

FIRST(S) =

FIRST(A) =

FIRST(B) =

C) [8 pts] Complete the implementation for a recursive-descent parser for the provided CFG, given on the
next page. Write your answer on the next page.

(scratch space, do not write your final answer here)

6

exception ParseError of string

let tok_list = ref [];;

let match_tok x = match !tok_list with
|(h::t) when x = h -> tok_list := t
|_ -> raise (ParseError "bad match")

let lookahead () = match !tok_list with
|[] -> None
|(h::t) -> Some h

let rec Parse_S() =

if lookahead() = Some “m” then
(match_tok “m”; Parse_B())

else (* fill-in below *)

and Parse_A() =

if lookahead() = Some “c” then (* fill-in below *)

and Parse_B() =

if lookahead() = Some “1” then

(match_tok “1”; match_tok “#”; parse_S())
else (* fill-in below *)

7

5. Operational Semantics [10 pts]
A) [5 pts] Using the rules given below, show: let x = 1 in 1 + x ⟶ 2

In the rules, e refers to an expression whose abstract syntax tree (AST) is defined by the following
grammar, where x is an arbitrary identifier and n is an integer.

v ::= n
e ::= x | v | let x = e in e | e + e

8

B) [5 pts] Below are operational semantics rules for a simple language, where the abstract syntax tree for
expressions e and values v defined as follows.

v ::= false | true
e ::= v | not e | if e1 then e2

Write a function eval of type exp -> exp, where exp is the OCaml representation of e:

type exp =

 Tru (* corresponds to true *)
 | Fals (* corresponds to false *)
 | If of exp * exp (* corresponds to if e1 then e2 *)
 | Not of exp (* corresponds to not e *)

The eval function evaluates an expression in a manner consistent with the rules. For example:

eval(Tru) = Tru

eval(Not (Not Tru)) = Tru

etc.

let rec eval e =

 match e with

 | Tru -> Tru

 (* FILL IN REST *)

9

6. Lambda Calculus [13 pts]
A) [2 pts] Circle the free variables in the following λ-term:

λx. y (λz.z y x) z

B) [2 pts] Write a lambda calculus term that is α-equivalent to the one above.

C) [4 pts] Circle true or false for the following questions (1 point each)

True / False The beta-normal form of (λx.y z) z is y z

True / False The fixpoint combinator Y is used in lambda calculus to achieve recursion

True / False A Church numeral is the encoding of a real number as a lambda calculus term

True / False The expression (λx. y) z encodes let x = y in z

D) [5 pts] Reduce the following lambda expressions into beta-normal form. Show each beta reduction. If
already in normal form or infinite reduction, write “normal form” or“infinite reduction”, respectively.

1) (λx. (λy. y x) (λz. x z)) (λy. y y)

2) (λx. x y z) (λy. z)

10

