
CMSC330 Spring 2019 Midterm 2 
11:00am / 12:15pm / 2:00pm 

 
 
Name (PRINT YOUR NAME as it appears on gradescope): 
 
 __________________________________________________________________ 
  
Discussion Time (circle one)    10am    11am    12pm   1pm     2pm    3pm 

 
Instructions 

● Do not start this test until you are told to do so! 
● You have 75 minutes to take this midterm. 
● This exam has a total of 100 points, so allocate 45 seconds for each point. 
● This is a closed book exam.  No notes or other aids are allowed. 
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed. 
● For partial credit, show all of your work and clearly indicate your answers. 
● Write neatly. Credit cannot be given for illegible answers. 

 
 
 

  Problem Score 

1 PL Concepts /13 

2 Finite Automata /31 

3 Context Free Grammars /17 

4 Parsing /16 

5 Operational Semantics /10 

6 Lambda Calculus /13 

  Total /100 
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1. PL concepts [13 pts] 
A) [5 pts] Circle true or false for each of the following 5 questions (1 point each) 
 

True  /  False In OCaml, if an exception is thrown, then the executing program will terminate 

True  /  False OCaml variables are immutable 

True  /  False If x and y are aliases, changing the content in the location referenced by x will  
cause it to no longer be an alias of y 

 

True  /  False If a lambda calculus expression reduces to a beta-normal form using  
call-by-value order, then it will also do so using call-by-name 

 

True  /  False You can create a cyclic data structure in OCaml (i.e., one that points to itself) 

 
B) [4 pts] Consider the following OCaml definitions for f, g, and h (each is a int -> int function). 
 
let f z =   let g =      let h =  
  let y = ref 0 in     let x = ref 1 in (fun z -> let x = z+1 in 

  y := !y + z;     (fun z ->   let _ = (print_int z,print_int x) in 

  !y       x := !x + 1;   0) 

      !x+z) 

    Answer: 

Which of these functions is not referentially transparent?  

Which function’s execution outcome depends on OCaml’s evaluation order  

What is a side effect carried out by at least one of the functions?  

Which function’s execution is only interesting/useful because of its side 
effects, not what it returns? 

 

 
C) [4 pts] Check the box next to each function that is tail recursive (they all type check and run properly). 

⎕ let rec sum lst = 
    match lst with 
       [] -> 0 
     | h::t-> h + sum t 

⎕  let rec max lst r = 
     match lst with 
       [] -> r 
     | h::t ->  
         if r>h then max t r 
                else max t h 

⎕  let rec pow2 x = 
     if x = 1 then true 
     else  
       let y = x/2 in 
       if y*2 = x then pow2 y 
       else false 

⎕  let rec prod lst = 
     match lst with 
       [] -> 1 
     | h::t -> (prod t) * h 
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2. Finite Automata [31 pts] 
A) [4 pts] Circle true or false for each of the following 4 questions (1 point each) 
 

True  /  False   NFAs are more expressive than DFAs (i.e., they can describe more languages) 

True  /  False   Every CFG has an equivalent NFA 

True  /  False   Every formal language has a unique DFA that generates it 

True  /  False   Regexes are more expressive (can generate more languages) than DFAs  

 
B) [6 pts] For each of the following statements, check the DFA box if it’s true for DFAs, and the NFA box 
for NFAs. You may check neither or both boxes. 
 

⎕DFA  ⎕NFA Can transition to multiple states at once with a symbol 

⎕DFA  ⎕NFA Can have epsilon transitions 

⎕DFA  ⎕NFA Can have multiple final states 

⎕DFA  ⎕NFA Always has at least one final state 

⎕DFA  ⎕NFA Easy to translate directly from a regular expression 

⎕DFA  ⎕NFA Can accept an empty string 
 

C) [6 pts]  Draw a DFA that is equivalent to the following NFA.  
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D) [4 pts] Circle any of the following strings that would be accepted by the nfa from the previous problem. 

aba  abbbbba aa abaa   

 

E) [6 pts] Draw an NFA that accepts the same language as the regex (a*b)|(cd). Here are some 
examples this NFA will accept:  b, ab, cd, aab, aaaaab 
 

 

 

 

 

 

 

  

 

F) [5 pts] Draw a DFA that accepts strings of the form anbn  where 0 ≤ n ≤ 3 over Σ = { a,b } 
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3. Context Free Grammars [17 pts] 
A) [4 pts] Check the box next to the strings that are accepted by the following CFG. Note that here and 
below all nonterminals are in italics (like T and W) and terminals are in bold (like a, b). 
 

T → aW | b 
W → b | bT | aW 
 

⎕ abba ⎕ aaabb ⎕ baa ⎕ aab 
 
B) [5 pts] Create a CFG for the language of all strings of the form nxfzay where x ≥ y ≥ 0 and z > 0. 
Example strings in the language are nfa, f, nnnfaa. Example strings not in the language are a, n, fa, 
nfaa.  

 
 
 
 
 

 
 
C) [4 pts] Rewrite the following grammar so that it can be parsed by a recursive descent parser. Note that 
parentheses and commas, below, are terminals (along with r, u, and o). 
 

S → A)  
A → A,r | A,u | (o 

 
 
 
 
 
 
 
D) [4 pts] The following CFG is ambiguous. Rewrite the grammar to remove the ambiguity. Note that 
minus sign is a terminal (along with 1, 2, and 3). 
 

E → E - E | N 
N → 1 | 2 | 3 
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4. Parsing and Scanning [16 pts]  
A) [3 pts] Recall the scanner for SmallC. Suppose, when you tokenize the variable “for2”, your tokenizer 
returned [Tok_ID("for");Tok_Int(2)] instead of [Tok_ID("for2")]. How would you fix this? (Write 
1-2 sentences only.) 
 
 
 
 
 
 
 
 
B) [5 pts] Consider the following CFG. Compute the first sets for 
each nonterminal.  
 

FIRST(S) =  
 
FIRST(A) =  
 
FIRST(B) =  

 
C) [8 pts] Complete the implementation for a recursive-descent parser for the provided CFG, given on the 
next page. Write your answer on the next page. 
 
 
 
 
 
 

(scratch space, do not write your final answer here) 
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exception ParseError of string 
 
let tok_list = ref [];;  
 
let match_tok x = match !tok_list with  
|(h::t) when x = h -> tok_list := t  
|_ -> raise (ParseError "bad match") 
 
let lookahead () = match !tok_list with  
|[] -> None 
|(h::t) -> Some h  
 
 

 
let rec Parse_S() =  

if lookahead() = Some “m” then 
(match_tok “m”; Parse_B()) 

else (* fill-in below *) 
 
 
 
 
 
 
 
and Parse_A() =  

if lookahead() = Some “c” then (* fill-in below *) 
 

 
 
 

  
 
 
 
and Parse_B() =  

if lookahead() = Some “1” then 

(match_tok “1”; match_tok “#”; parse_S()) 
else (* fill-in below *) 
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5. Operational Semantics [10 pts]  
A) [5 pts] Using the rules given below, show: let x = 1 in 1 + x ⟶ 2  

 
In the rules, e refers to an expression whose abstract syntax tree (AST) is defined by the following 
grammar, where x is an arbitrary identifier and n is an integer. 

 
v ::= n 
e ::= x | v | let x = e in e | e + e 
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B) [5 pts] Below are operational semantics rules for a simple language, where the abstract syntax tree for 
expressions e and values v defined as follows. 
 

v ::= false | true 
e ::= v | not e | if e1 then e2  

 

Write a function eval of type exp -> exp, where exp is the OCaml representation of e: 
 
type exp = 

    Tru                        (* corresponds to true *) 
  | Fals                       (* corresponds to false *) 
  | If of exp * exp            (* corresponds to if e1 then e2 *) 
  | Not of exp                 (* corresponds to not e *) 
 

The eval function evaluates an expression in a manner consistent with the rules. For example:  
 

eval(Tru) = Tru 

eval(Not (Not Tru)) = Tru 

etc. 
 

let rec eval e = 

  match e with 

  | Tru -> Tru 

   (* FILL IN REST *) 
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6. Lambda Calculus [13 pts] 
A) [2 pts] Circle the free variables in the following λ-term:  

 

λx. y (λz.z y x) z  
 

B) [2 pts] Write a lambda calculus term that is α-equivalent to the one above. 
 
 
 
 
 
C) [4 pts] Circle true or false for the following questions (1 point each) 
 
 

True / False The beta-normal form of (λx.y z) z is y z 
 

True / False The fixpoint combinator Y is used in lambda calculus to achieve recursion 
 

True / False A Church numeral is the encoding of a real number as a lambda calculus term 
 

True / False The expression (λx. y) z encodes let x = y in z 
 
D) [5 pts] Reduce the following lambda expressions into beta-normal form. Show each beta reduction. If 
already in normal form or infinite reduction, write “normal form” or“infinite reduction”, respectively.  
 

1) (λx. (λy. y x) (λz. x z)) (λy. y y) 

 

 

 

 

 

 

 

  

2) (λx. x y z) (λy. z)  
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