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CMSC330 Spring 2016 Midterm #2 
9:30am/12:30pm/3:30pm 

 
Name: 
            _________________________________ 
 
Discussion Time: 10am 11am 12pm 1pm 2pm 3pm 
TA Name (Circle):   Adam Anshul  Austin Ayman Damien  
 Daniel Jason  Michael Patrick William  
Instructions 

• Do not start this test until you are told to do so! 
• You have 75 minutes to take this midterm. 
• This exam has a total of 100 points, so allocate 45 seconds for each point. 
• This is a closed book exam.  No notes or other aids are allowed. 
• Answer essay questions concisely in 2-3 sentences. Longer answers are not needed. 
• For partial credit, show all of your work and clearly indicate your answers. 
• Write neatly. Credit cannot be given for illegible answers. 

 
 

 Problem Score 

1 Finite Automata /20 

2 Context Free Grammars /15 

3 Parsing  /10 

4 OCaml /20 

5 Programming Language Concepts /13 

6 Operational Semantics /10 

7 Lambda Calculus /12 

 Total /100 
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1. Finite Automata (20 pts) 
1) (5 pts) Construct an NFA for the following regular expression: (aa|bc)* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

2) (5 pts) Describe the strings accepted by the following NFA. 
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3) (5 pts) Write a regular expression which accepts the same strings as the following NFA.  

 
 
 
 
 
 
 
 
 
 

4) (5 pts) Convert the above NFA to a DFA 
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2. Context Free Grammars (15 pts)  

1)  (4 pts) Create a context-free grammar which accepts strings of the following form:  an b2n+1 
(n>=0)   Strings include “b”, “abbb”, “aabbbbb”, etc. 

 
 
 
 
 
 
 
 
 
2) (6 pts)  

a. Show that this grammar CFG is ambiguous,  
S -> SaS|T 

    T -> Tb|b 
 
 
 
 
 
 
 
 
 

b. Rewrite the CFG so that it is not ambiguous. 
 

 
 
 
 
 
 
 
3) (5 pts) Is the language defined by the following CFG a regular language?  If so, give an 

equivalent regular expression.  If not, say why it is not regular. 
 S -> AyAyAS|ε 
      A -> xA|ε 
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3. Parsing (10 pts)  
1) (4 pts) Given this CFG, what would be the first set that is generated by S? 

 
S -> ASB | B 
A -> wA | w 
B -> cB | hB | iB | kB | eB | nB 

 
 
 
 

2) (6 pts) I’ve made the world’s best language and named it Sequel. All sequel can do is 
add and subtract numbers or expressions and output the value of an expression. 

 
type token = 
| Tok_Num of int 
| Tok_LParen 
| Tok_RParen 
| Tok_Semi 
| Tok_Print 
| Tok_Sum 
| Tok_Sub 

type ast = 
| Num of int 
| Sum of ast * ast 
| Sub of ast * ast 
| Print of ast 

 

 
Grammar: 
printExp -> 'output ' additiveExp ';' 
additiveExp -> subtractiveExp ('+' subtractiveExp)* 
subtractiveExp -> primaryExp ('-' primaryExp)* 
primaryExp -> '(' additiveExp ')' | INITLIT 
INTLIT-> ('0' |    ('1'..'9') ('0'..'9')* ) 

 
Given that you have a lookahead lst, parse_sub lst, parse_primary lst, parse_print lst 
and parse_int lst of type token list -> ast * token list. Write a parse_add lst that parses 
an additive expression. The lookahead function is defined as follows: 

 

  let lookahead tok_list = match tok_list with 
        [] -> raise (IllegalExpression "lookahead") 
        | (h::t) -> (h,t);; 
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4. OCaml (20 pts) 

 
 

1) (6 pts ) Write a function app of type  
'a list -> ('a -> 'b) list -> 'b list list 
that, given a list and a list of functions, applies each function in the function list to the ‘a 
list.  You should use at least one of fold and map. You cannot have rec in the 
function definition or in the definition of any helper functions. (Note: the order of 
the lists in the list list does not matter). 

 
 Examples:  
  f [1;2;3;4;5] [(fun x -> x); (fun x -> x * x); (fun x -> x * x * x)] = 
   [[1; 8; 27; 64; 125]; [1; 4; 9; 16; 25]; [1; 2; 3; 4; 5]] 
   OR 
   [[1; 2; 3; 4; 5]; [1; 4; 9; 16; 25]; [1; 8; 27; 64; 125]] 
 
  
 
let app lst f_lst =  
									
	
	
	
	
	
	
	
	
	
	
	
	
	

let rec map f l = match l with 
     [] -> [] 
     | h::t -> let r = f h in r :: map f t 
;; 
 
let rec fold f a l = match l with 
    [] -> a 
   |h::t -> fold f (f a h) t 
;; 



 7 

	
2) (8	pts)	Recall	the	concept	of	an	an	AST,	an	intermediate	representation	of	code	used	before	

execution.	Given	the	following	definition	of	an	AST,	write	a	recursive	function	eval_ast	of	type	
ast -> int that will evaluate a given AST.	

 
              type ast = 
        |    Sum of ast * ast         (* Adds two sides *) 
        |    Double of ast              (* Doubles the result of the child node *) 
        |    Num of int               (* Contains a normal integer *) 

;; 
 

Example:	eval_ast (Sum(Sum(Num(3),Num(4)),Double(Num(8)))) = 23 
 
 
 
 
 
 
 
 
 
 
 
 

3) (6 pts) Two trees are identical when they have same data and arrangement of data is also 
same. Given the definition of tree  

 
type tree = 
 |Leaf 
 |Node of tree * int * tree 
 
Write a function equal (t1, t2) of type tree * tree -> bool, which returns true if t1 and t2 are equal 
and returns false otherwise. 
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5. Programming Language Concepts (13 pts) 
 

1) (3 pts) T/F           OCaml’s  @ operator is an example of ad hoc polymorphism 
 
 

2) (4 pts) Write the output of following OCaml code. 
let x = 10 ;; 
let f y = x + y;;  

                       let x = 5 ;; 
           let y = 7 ;; 

let z = f (x + y) ;; 
 
What is the value of z:  

With Static Scoping With Dynamic Scoping 
  

 
 

3) (3 pts) Consider the following OCaml code fragment. 
 

let foo a b = a + b in foo 5 6;; 
 

Does the code fragment above produce any side effects? 
a) Yes, because foo returns the result of a + b. 
b) Yes, because if you typed this into the interpreter you would get back - : int = 

11. 
c) No, because it doesn’t mutate any state. 
d) No, because the modifications it makes to the environment are contained in a 

closure. 
 
 

4) (3 pts) Signatures are the enabling mechanism for overloading of members in classes. A 
method's signature is the 

a) name of the method and the type of its return value. 
b) name of the method and the names of its parameters. 
c) name of the method and the data types of its parameters. 
d) name of the method, its parameter list, and its return type.  
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6. Operational Semantics (10 pts) 
 
      Domain of n: Z 
      Domain of b: {true, false} 
      Domain of v: {n, b}       
Axioms: 
      Number:                True:                        False: ____________                                           
                     N -> n              true -> true                   false -> false 
Arithmetic/Comparison operations: 
      Op:   E1 -> n1       E2 -> n2   
              E1 op E2 -> n1 op n2 
(Hint: Arithmetic operations evaluate to values in the domain of n. Comparisons evaluate to b) 
Booleans: 
      If-T : E1 -> true               E2 -> v2     If-F: E1 -> false              E3 -> v3 
               If E1 then E2 else E3 -> v2              If E1 then E2 else E3 -> v3 
 
Fill in the missing pieces of the following deductions.  

1) (4 pts) 
 

 
 
 
 
 
 
 
 
 
 
2) (6 pts) 
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7. Lambda Calculus (12 pts) 
1) (4 pts) Make all parentheses explicit in the following expression: 

      λc.    λa.     a       b    (    λb.     b     a    )      c 
 
  
 
 
 
 
 

2) (4 pts each) Reduce the expressions as far as possible by showing the intermediate β-
reductions and α-conversions.  

(λx.λy.x y) (λy.y) b 
 
 
 
 
 
 
 
 
 

3)  (4 pts) Given: 
succ = λz.λf.λy.f (z f y)  
0 = λf.λy.y  
1 = λf.λy.f y  
2 = λf.λy.f (f y)  

Prove that   succ 1 = 2 
succ 1 =  
 

 
 

 
 


