
CMSC330 Fall 2019 - Midterm 2
SOLUTIONS

First and Last Name (PRINT):

9-Digit University ID:

Instructions:

- Do not start this test until you are told to do so!
- You have 75 minutes to take this midterm.
- This exam has a total of 100 points, so allocate 45 seconds for each point.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.
- Write your 9-Digit UID at the top of EVERY PAGE.

1. PL Concepts / 15

2. Finite Automata / 30

3. CFGs and Parsing / 30

4. Operational Semantics / 10

5. Lambda Calculus / 15

Total / 100

Please write and sign the University Honor Code below: I pledge on my honor that I have not
given or received any unauthorized assistance on this examination.

I solemnly swear that I didn’t cheat.

Signature:

9-Digit University ID:

1. [15pts] PL Concepts

1 (7pts) Circle your answers. Each T/F question is 1 point.

T F A regular expression can express all palindromes with letters
A-Z, and shorter than 10 letters

T F Static analysis, such as type checking, occurs before parsing

T F There are multiple paths by which the same string can be
accepted in a DFA

T F Calling a grammar ambiguous is equivalent to saying a string
may have multiple different leftmost derivations

T F Using lookahead in our parser is an example of predictive
parsing

T F Operational semantics are analogous to interpreting a
program

T F Regular expressions are more powerful than DFAs (i.e., they
can express more languages than DFAs can)

2 (1pts) The step below is an example of...

(λx . x y) (λz . a z)
(λz . a z) y

A. α-conversion

B. β-reduction

Page 2 of 12

9-Digit University ID:

3 (3pts) What is the output of the following OCaml code? (That is, what is printed)

let x = ref 0 in
let y = x in

y := 1;
print_int !x;
print_int !y

OUTPUT: 1 1

4 (4pts) What is printed by the following OCaml program when the parameters are passed by
call-by-name and call-by-value?

let f x y =
if x > 5 then (y,y) else (10,10);;

f 10 (print_string "hello"; 2);;

Call-by-name: hellohello Call-by-value: hello

Page 3 of 12

9-Digit University ID:

2. [30pts] Finite Automata

1 (6pts) Which of the following strings are accepted by this NFA? Circle all that apply.

0

1

2

3 4

a

a

c

b

c

ε

a

A. abcab

B. abca

C. abccc

D. aacaccaca

2 (8pts) Construct an NFA that accepts the same language as the following regular expression.
There are many answers, any equivalent NFA will be accepted.

(a+|b*)c?

0

1

2

3 4

a

ε

a

b

ε

ε

c

Page 4 of 12

9-Digit University ID:

3 (6pts) Answer the following questions about this NFA:

0

2

1

a

ε

a

b

b

e-closure({0}) = {0, 1} e-closure(move({0, 1}, a)) = {0, 1, 2}

4 (10pts) Give a DFA equivalent to the NFA above. Any equivalent DFA will be accepted, but
your answer should be clear. You may give steps for partial credit.

0,1 2 1

0,1,2 1,2

a

b

a

b
b

a

b

a

b

Page 5 of 12

9-Digit University ID:

3. [30pts] CFGs and Parsing

1 (5pts) Write a CFG that generates the following language:

axbycx+y, where x, y ≥ 0

S→ aSc | B
B→ bBc | ε

2 (5pts) The following CFG is ambiguous. Rewrite it so that it is not ambiguous. There are
many answers, any CFG which is equivalent and is not ambiguous will be accepted. (Note:
here, the terminals are: +, *, (,), a, and b.)

E→ E + E | E * E | (E) | a | b

E→ T + E | T
T→W * T | W
W→ (E) | a | b

3 (4pts) List the FIRST SETS for each nonterminal in the following grammar (lowercase letters
are terminals):

S→ aB | Bb | Sc
B→ dB | d

FIRST(S) = { a, d }

FIRST(B) = { d }

Page 6 of 12

9-Digit University ID:

4 (6pts) Indicate if each of the following grammars can be parsed by a recursive descent
parser. If the answer is no, give a very brief explanation why.

Grammar Yes No If no, why?

S→ S + S | N
N→ 1 | 2 | 3 | (S)

X It is ambiguous.

S→ aS | B
B→ bB | b

X

S→ Sb | A
A→ aAc | c

X It is left recursive.

5 (10pts) Complete the OCaml implementation for a recursive-descent parser of the following
context-free grammar. The implementation of match_tok and lookahead are given below:

let tok_list = ref [];;
let match_tok x = match !tok_list with

| h :: t when x = h -> tok_list := t
| _ -> raise (ParseError "bad match");;

let lookahead () = match !tok_list with
| [] -> None
| h :: t -> Some h

S→ bS | cT
T→ Ra | RbR
R→ dR | ε

NOTE: this parser takes the imperative approach. Also notice that the tokens are simply strings.
So the token list for the string "abcdc" would look like ["a"; "b"; "c"; "d"; "c"]. You are
not creating an AST. If the input is invalid, throw a ParseError.

Write your implementation on the next page. The CFG
is repeated on the next page for your reference.

Page 7 of 12

9-Digit University ID:

let rec parse_S () =
if lookahead () = Some "b" then

match_tok "b";
parse_S ()

else (* fill in below *)

S→ bS | cT
T→ Ra | RbR
R→ dR | ε

if lookahead () = Some "c" then
match_tok "c";
parse_T ()

else
raise (ParseError "invalid")

and rec parse_T () = (* fill in below *)
parse_R ();
if lookahead () = Some "a" then

match_tok "a"
else if lookahead () = Some "b" then

match_tok "b";
parse_R ()

else
raise (ParseError "invalid")

and rec parse_R () =
if lookahead () = None then

()
else (* fill in below *)
if lookahead () = Some "d" then

match_tok "d";
parse_R ()

else
raise (ParseError "invalid")

Page 8 of 12

9-Digit University ID:

4. [10pts] Operational Semantics

1 (2pts) Below is an incorrect rule for an if-then-else construct when the condition is true.
Indentify the mistake, and explain how to fix it. Here, the expression if a then b else c
is encoded as if -then-else a b c.

A; e1 → true A; e3 → v

A; if -then-else e1 e2 e3 → v
IFTHENELSE-TRUE

The second part on the top should be e2, not e3.

2 (3pts) Describe what the operator myst does, or give its name.

A; e1 → true A; e2 → true

A; e1 myst e2 → true

A; e1 → true A; e2 → false

A; e1 myst e2 → false

A; e1 → false A; e2 → true

A; e1 myst e2 → false

A; e1 → false A; e2 → false

A; e1 myst e2 → false

The AND operator

Page 9 of 12

9-Digit University ID:

3 (5pts) Using the following rules, show that:

A; let x = 3 in let x = 2 in x + x→ 4

A;n→ n

A(x) = v

A;x→ v

A; e1 → v1 A, x : v1; e2 → v2

A; let x = e1 in e2 → v2

A; e1 → n1 A; e2 → n2 n3 is n1 + n2

A; e1 + e2 → n3

A; 3→ 3

A, x : 3; 2→ 2

A, x : 3, x : 2(x) = 2

A, x : 3, x : 2;x→ 2

A, x : 3, x : 2(x) = 2

A, x : 3, x : 2;x→ 2 4 is 2 + 2

A, x : 2, x : 3;x+ x→ 4

A, x : 3; let x = 2 in x+ x→ 4

A; let x = 3 in let x = 2 in x+ x→ 4

Page 10 of 12

9-Digit University ID:

5. [15pts] Lambda Calculus

1 (8pts) Reduce the expressions as far as possible by showing the intermediate β-reductions
and α-conversions. Make sure to show each step for full credit!

(λx. λy. x y) (λy. y) x

((λx. (λy. x y)) (λy. y)) x
(λy. (λy. y) y) x
(λy. (λz. z) y) x
(λz. z) x
x

(λx. λy. x y y) (λm. m) n

((λx. (λy. x y y)) (λm. m)) n
(λy. (λm. m) y y) n
(λm. m) n n
((λm. m) n) n
n n

Page 11 of 12

9-Digit University ID:

2 (7pts) Reduce the following expression to β-normal form using both call-by-name and call-
by-value. Show each step, including any β-reductions and α-conversions. If there is infinite
reduction, write “infinite reduction.”

(λy.x) ((λx. x x x) (λz. z z z))

Call-by-name:

(λy.x) ((λx. x x x) (λz. z z z))

x

Call-by-value:

(λy.x) ((λx. x x x) (λz. z z z))

(λy.x) ((λz. z z z) (λz. z z z) (λz. z z z))

(λy.x) ((λz. z z z) (λz. z z z) (λz. z z z) (λz. z z z))

...

Infinite reduction

Page 12 of 12

