CMSC330 Fall 2019 - Midterm 2 SOLUTIONS

First and Last Name (PRINT): \qquad

9-Digit University ID: \qquad

Instructions:

- Do not start this test until you are told to do so!
- You have 75 minutes to take this midterm.
- This exam has a total of 100 points, so allocate 45 seconds for each point.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.
- Write your 9-Digit UID at the top of EVERY PAGE.

1. PL Concepts	$/ 15$
2. Finite Automata	$/ 30$
3. CFGs and Parsing	$/ 30$
4. Operational Semantics	$/ 10$
5. Lambda Calculus	$/ 15$
Total	$/ 100$

Please write and sign the University Honor Code below: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

I solemnly swear that I didn't cheat.

Signature: \qquad
\qquad

1. [15pts] PL Concepts

1 (7pts) Circle your answers. Each T/F question is 1 point.

T F A regular expression can express all palindromes with letters A-Z, and shorter than 10 letters

T F Static analysis, such as type checking, occurs before parsing

T F There are multiple paths by which the same string can be accepted in a DFA

T F Calling a grammar ambiguous is equivalent to saying a string may have multiple different leftmost derivations

T F Using lookahead in our parser is an example of predictive parsing

T F Operational semantics are analogous to interpreting a program

T F Regular expressions are more powerful than DFAs (i.e., they can express more languages than DFAs can)

2 (1pts) The step below is an example of...
($\lambda x . x y$) ($\lambda z . a z$)
($\lambda z, a z$) y
A. α-conversion
B. β-reduction
\qquad

3 (3pts) What is the output of the following OCaml code? (That is, what is printed)

```
let x = ref 0 in
    let y = x in
        y := 1;
        print_int !x;
        print_int !y
```


OUTPUT: 11

4 (4pts) What is printed by the following OCaml program when the parameters are passed by call-by-name and call-by-value?
let $\mathrm{f} x \mathrm{y}=$
if $x>5$ then (y, y) else $(10,10) ;$;
f 10 (print_string "hello"; 2); ;
Call-by-name: hellohello
Call-by-value: hello
\qquad

2. [30pts] Finite Automata

1 (6pts) Which of the following strings are accepted by this NFA? Circle all that apply.

A. $a b c a b$
B. abca
C. abccc
D. aacaccaca

2 (8pts) Construct an NFA that accepts the same language as the following regular expression. There are many answers, any equivalent NFA will be accepted.

$$
(a+\mid b *) c ?
$$

\qquad

3 (6pts) Answer the following questions about this NFA:

4 (10pts) Give a DFA equivalent to the NFA above. Any equivalent DFA will be accepted, but your answer should be clear. You may give steps for partial credit.

\qquad

3. [30pts] CFGs and Parsing

1 (5pts) Write a CFG that generates the following language:

$$
a^{x} b^{y} c^{x+y}, \text { where } x, y \geq 0
$$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSc} \mid \mathrm{B} \\
& \mathrm{~B} \rightarrow \mathrm{bBc} \mid \varepsilon
\end{aligned}
$$

2 (5pts) The following CFG is ambiguous. Rewrite it so that it is not ambiguous. There are many answers, any CFG which is equivalent and is not ambiguous will be accepted. (Note: here, the terminals are: $\boldsymbol{+}^{*}$, (,), a, and b.)

$$
E \rightarrow E+E|E * E|(E)|\mathbf{a}| \mathbf{b}
$$

$$
\begin{aligned}
& E \rightarrow \mathbf{T}+E \mid T \\
& \mathbf{T} \rightarrow \mathbf{W} * T \mid W \\
& \mathbf{W} \rightarrow(E)|a| b
\end{aligned}
$$

3 (4pts) List the FIRST SETS for each nonterminal in the following grammar (lowercase letters are terminals):

$$
\begin{aligned}
& S \rightarrow \mathbf{a B}|\mathrm{Bb}| \mathrm{Sc} \\
& \mathrm{~B} \rightarrow \mathbf{d B | d}
\end{aligned}
$$

```
FIRST(S) = { a, d }
FIRST(B) = {d }
```

\qquad

4 (6pts) Indicate if each of the following grammars can be parsed by a recursive descent parser. If the answer is no, give a very brief explanation why.

Grammar	Yes	No	If no, why?
$S \rightarrow S+S \mid N$		X	It is ambiguous.
$N \rightarrow \mathbf{1} \mid \mathbf{2 \| 3 \| (S)}$			
$S \rightarrow \mathbf{S} \mid B$	X		
$B \rightarrow \mathbf{b B \| b}$		X	It is left recursive.
$S \rightarrow S b \mid A$			
$A \rightarrow \mathbf{a A c} \mid \mathbf{c}$			

5 (10pts) Complete the OCaml implementation for a recursive-descent parser of the following context-free grammar. The implementation of match_tok and lookahead are given below:

```
let tok_list = ref [];;
let match_tok x = match !tok_list with
    | h :: t when x = h -> tok_list := t
    | _ -> raise (ParseError "bad match");;
let lookahead () = match !tok_list with
    | [] -> None
    | h :: t -> Some h
```

NOTE: this parser takes the imperative approach. Also notice that the tokens are simply strings. So the token list for the string "abcdc" would look like ["a"; "b"; "c"; "d"; "c"]. You are not creating an AST. If the input is invalid, throw a ParseError.

Write your implementation on the next page. The CFG is repeated on the next page for your reference.
\qquad

```
let rec parse_S () =
    if lookahead () = Some "b" then
        match_tok "b";
        parse_S ()
    else (* fill in below *)
    if lookahead () = Some "c" then
        match_tok "c";
        parse_T ()
    else
        raise (ParseError "invalid")
```

and rec parse_T () = (* fill in below *)
parse_R ();
if lookahead () = Some "a" then
match_tok "a"
else if lookahead () = Some "b" then
match_tok "b";
parse_R ()
else
raise (ParseError "invalid")

```
and rec parse_R () =
    if lookahead () = None then
        ()
    else (* fill in below *)
    if lookahead () = Some "d" then
        match_tok "d";
        parse_R ()
    else
        raise (ParseError "invalid")
```

\qquad

4. [10pts] Operational Semantics

1 (2pts) Below is an incorrect rule for an if-then-else construct when the condition is true. Indentify the mistake, and explain how to fix it. Here, the expression if a then b else c is encoded as if-then-else $a b c$.

$$
\frac{A ; e_{1} \rightarrow \text { true } \quad A ; e_{3} \rightarrow v}{A ; \text { if-then-else } e_{1} e_{2} e_{3} \rightarrow v} \text { IFThenELSE-TruE }
$$

The second part on the top should be e_{2}, not e_{3}.

2 (3pts) Describe what the operator myst does, or give its name.

$$
\begin{array}{cc}
\frac{A ; e_{1} \rightarrow \text { true } \quad A ; e_{2} \rightarrow \text { true }}{A ; e_{1} \text { myst } e_{2} \rightarrow \text { true }} & \\
\frac{A ; e_{1} \rightarrow \text { true } A ; e_{2} \rightarrow \text { false }}{A ; e_{1} \text { myst } e_{2} \rightarrow \text { false }} \\
\frac{A ; e_{1} \rightarrow \text { false } \quad A ; e_{2} \rightarrow \text { true }}{A ; e_{1} \text { myst } e_{2} \rightarrow \text { false }} & \frac{A ; e_{1} \rightarrow \text { false } \quad A ; e_{2} \rightarrow \text { false }}{A ; e_{1} \text { myst } e_{2} \rightarrow \text { false }}
\end{array}
$$

The AND operator

3 (5pts) Using the following rules, show that:

$$
\text { A; let } x=3 \text { in let } x=2 \text { in } x+x \rightarrow 4
$$

$$
\overline{A ; n \rightarrow n}
$$

$$
\frac{A(x)=v}{A ; x \rightarrow v}
$$

$$
\frac{A ; e_{1} \rightarrow v_{1} \quad A, x: v_{1} ; e_{2} \rightarrow v_{2}}{A ; \text { let } x=e_{1} \text { in } e_{2} \rightarrow v_{2}} \quad \begin{array}{lcl}
A ; e_{1} \rightarrow n_{1} \quad A ; e_{2} \rightarrow n_{2} & n_{3} \text { is } n_{1}+n_{2} \\
A ; e_{1}+e_{2} \rightarrow n_{3}
\end{array}
$$

$\frac{\frac{A, x: 3, x: 2(x)=2}{A, x: 3 ; 2 \rightarrow 2}}{\frac{A, x: 3, x: 2 ; x \rightarrow 2}{A, 3 \rightarrow 3} \quad \frac{A, x: 3, x: 2(x)=2}{A, x: 3, x: 2 ; x \rightarrow 2} \quad 4 \text { is } 2+2}$
$\frac{A, x: 2, x: 3 ; x+x \rightarrow 4}{}$
$A ;$ let $x=3$ in let $x=2$ in $x+x \rightarrow 4$
in $x+x \rightarrow 4$
\qquad

5. [15pts] Lambda Calculus

1 (8pts) Reduce the expressions as far as possible by showing the intermediate β-reductions and α-conversions. Make sure to show each step for full credit!

$$
(\lambda x . \lambda y . x y)(\lambda y . y) x
$$

(($\lambda \mathrm{x} .(\lambda \mathrm{y} . \mathrm{x} y))(\lambda \mathrm{y} . \mathrm{y})) \mathrm{x}$
($\lambda \mathrm{y} .(\lambda y . y) y) x$
($\lambda \mathrm{y} .(\lambda z . z) \mathrm{y}) \mathrm{x}$
(λz. z) x
x
$(\lambda x . \lambda y . x y y)(\lambda m . m) n$
$((\lambda x .(\lambda y . x y y))(\lambda m . m)) n$
($\lambda \mathrm{y}$. $(\lambda \mathrm{m} . \mathrm{m})$ y y$) \mathrm{n}$
($\lambda \mathrm{m} . \mathrm{m}$) n n
$((\lambda m . m) n) n$
n n
\qquad

2 (7pts) Reduce the following expression to β-normal form using both call-by-name and call-by-value. Show each step, including any β-reductions and α-conversions. If there is infinite reduction, write "infinite reduction."
$(\lambda y . x)((\lambda x . x x x)(\lambda z . z z z))$
Call-by-name:
($\lambda \mathrm{y} . \mathrm{x})((\lambda \mathrm{x} . \mathrm{xxx})(\lambda z . \mathrm{zzz}))$
x

Call-by-value:
($\lambda \mathrm{y} . \mathrm{x})((\lambda \mathrm{x} . \mathrm{xxx})(\lambda z . \mathrm{zzz}))$
($\lambda \mathrm{y} . \mathrm{x})((\lambda z . \mathrm{zzz})(\lambda z . \mathrm{zzz})(\lambda z . \mathrm{zzz}))$
$(\lambda y . x)((\lambda z . z z z)(\lambda z . z z z)(\lambda z . z z z)(\lambda z . z z z))$
...
Infinite reduction

