
CMSC 330, Fall 2018 — Midterm 2

Name

Teaching Assistant

Kameron Aaron Danny Chris Michael P. Justin Cameron B. Derek Kyle Hasan

Shriraj Cameron M. Alex Michael S. Pei-Jo

Instructions

• Do not start this exam until you are told to do so.

• You have 75 minutes for this exam.

• This is a closed book exam. No notes or other aids are allowed.

• For partial credit, show all your work and clearly indicate your answers.

Honor Pledge

Please copy and sign the honor pledge: “I pledge on my honor that I have not given or received any

unauthorized assistance on this examination.”

Section Points

Programming Language Concepts 10

Finite Automata 23

Context-Free Grammars 18

Parsing 18

Operational Semantics 11

Lambda Calculus 13

Imperative OCaml 7

Total 100

1

1 Programming Language Concepts

In the following questions, circle the correct answer.

1. [1 pts] (T / F) The input to a lexer is source code and its output is an abstract syntax tree.

Solution. False.

2. [1 pts] (T / F) Any language that can be expressed by a context-free grammar can be expressed by a

regular expression.

Solution. False.

3. [1 pts] (T / F) OCaml is Turing-complete.

Solution. True.

4. [1 pts] (T / F) Converting a DFA to an NFA always requires exponential time.

Solution. False.

5. [1 pts] (T / F) Recursive descent parsing requires the target grammar to be right recursive.

Solution. True.

6. [1 pts] (T / F) The SmallC parser in P4A used recursive descent.

Solution. True.

7. [1 pts] (T / F) The call-by-name and call-by-value reduction strategies can produce different normal forms

for the same λ expression.

Solution. False.

8. [1 pts] (T / F / Decline to Answer) I voted last Tuesday. (All answers are acceptable.)

Solution. Any.

9. [1 pts] What language feature does the fixed-point combinator implement?

(a) Booleans (b) Integers (c) Recursion (d) Closures

2

Solution. (c)

10. [1 pts] What is wrong with this definition of an NFA?

type (’q, ’s) nfa = {

qs : ’q list;

sigma : ’s list;

delta : (’q, ’s) transition list;

q0 : ’q list;

fs : ’q list;

}

(a) Allows states with multiple transitions on the same character.

(b) Allows ε-transitions.

(c) Allows multiple final states.

(d) Allows multiple start states.

Solution. (d)

3

2 Finite Automata

0start 1

2 3

ε, a

b

c ε, b
b

a

d

1. Use the NFA shown above to answer the following questions.

• [2 pts] ε-closure({0}) = { }

Solution. ε-closure({0}) = {0, 1, 3}

• [2 pts] move({1}, b) = { }

Solution. move(1, b) = {2, 3}

2. [1 pts] (T / F) Every NFA is also a DFA.

Solution. False

3. [1 pts] (T / F) Every DFA is also an NFA.

Solution. True

4. [5 pts] Draw an NFA that corresponds to the following regular expression: ((a?b) | (ab))?

4

Solution.

start
ε

ε

ε a ε ε b ε

ε

ε

ε

ε a ε b ε

ε

ε

ε

ε

ε

5. [7 pts] Convert the following NFA into an equivalent DFA.

0start 1

2 3

a

a ba
ε

ε

b

5

Solution.

0start 1, 2

1, 31, 2, 3

a

a

b

b

a

b

6. [5 pts] Circle all of the strings that will be accepted by the above NFA. (Note: Not the DFA you

generated)

(a) abbaa (b) aaaa (c) abbaabb (d) abbbbaab (e) aaaaa

Solution. (a), (c), (e)

6

3 Context-Free Grammars

1. [6 pts] Write a CFG that is equivalent to the regular expression (wp)+g?

Solution.

S → XY

X → wpX | wp

Y → gX | ε

2. [6 pts] Create a CFG that generates all strings of the form axbyaz, where y = x+ z and x, y, z ≥ 0.

7

Solution.

S → UL

U → aUb | ε

L→ bLa | ε

3. [6 pts] Given the following grammar, where S and A denote non-terminals, give a right-most and left-most

derivation of ((100, 33), 30). Show all steps of your derivation.

S → A | (S, S)

A→ 100 | 33 | 30

Solution.

• Left-most,

S → (S, S)

→ ((S, S), S)

→ ((100, S), S)

→ ((100, 33), S)

→ ((100, 33), 30))

• Right-most,

S → (S, S)

→ (S, S)

→ (S, 30))

→ (S, 30)

→ ((S, S), 30)

→ ((S, 33), 30)

→ ((100, 33), 30)

8

4 Parsing

1. [3 pts] Convert the following to a right-recursive grammar.

S → S + S | A

A→ A ∗A | B

B → n | (S)

Solution.

S → A+ S | A

A→ B ∗A | B

B → n | (S)

2. [5 pts] What are the first sets of the non-terminals in the following grammar?

S → bc | cA

A→ cAd | B

B → wS | ε

9

Solution.

first(S) = {b, c}

first(A) = {c, w, ε}

first(B) = {w, ε}

3. [10 pts] Finish the definition of a recursive descent parser for the grammar below. You need not build an

AST, assume all methods return unit. Note that match_tok takes a string.

S → Abc | A

A→ cAd | e

let lookahead () : string =

match !tok_list with

| [] -> raise (ParseError "no tokens")

| h::t -> h

let match_tok (a : string) : unit =

match !tok_list with

| h::t when a = h -> tok_list := t

| _ -> raise (ParseError "bad match")

let rec parse_S () : unit =

and parse_A () : unit =

10

Solution.

let rec parse_S () : unit =

let () = parse_A () in

if lookahead () = "b" then

let () = match_tok "b" in

match_tok "c"

else

()

and parse_A () : unit =

if lookahead () = "c" then

let () = match_tok "c" in

let () = parse_A () in

match_tok "d"

else if lookahead () = "e" then

match_tok "e"

else

raise (ParseError "parse_A")

11

5 Operational Semantics

A; false⇒ false A; true⇒ true

A; n⇒ n

A(x) = v

A; x⇒ v

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2
A; let x = e1in e2 ⇒ v2

A; e1 ⇒ n1 A; e2 ⇒ n2 n3 is n1 + n2
A; e1 + e2 ⇒ n3

A; e1 ⇒ true A; e2 ⇒ v

A; if e1 then e2 else e3 ⇒ v

A; e1 ⇒ false A; e3 ⇒ v

A; if e1 then e2 else e3 ⇒ v

Use the above rules to fill in the given constructions.

1. [6 pts]

A;

A; A;

A;

A; if then 10 + 3 else 5 + 2⇒ 7

Solution.

A;
false ⇒ false

A;
5⇒ 5

A;
2⇒ 2 7 is 5 + 2

A;
5 + 2⇒ 7

A; if
false

then 10 + 3 else 5 + 2⇒ 7

2. [5 pts]

; 4⇒ 4

; 5⇒ 5

(x)⇒ 5

; x⇒ 5

let x = 5 in x⇒ 5
A; let x = 4 in let x = 5 in x⇒ 5

Solution.

12

A ; 4⇒ 4

A, x = 4
; 5⇒ 5

A, x = 4, x = 5
(x)⇒ 5

A, x = 4, x = 5
; x⇒ 5

A, x = 4
let x = 5 in x⇒ 5

A; let x = 4 in let x = 5 in x⇒ 5

13

6 Lambda Calculus

1. [2 pts] Circle all of the free variables in the following λ expression. (A variable is free if it is not bound

by a λ abstraction.)

x (λx. (λy. λz. x y z) y)

Solution.

x (λx. (λy. λz. x y z) y)

2. [2 pts] Circle all of the following where the λ expressions are α-equivalent.

(a) ((λa. (λy. y a) y) and (λx. x y)

(b) (λx. (λy. x y)) and (λy. (λx. y x))

Solution. The (a) expressions not α-equivalent, but the (b) expressions are.

3. Reduce each λ expression to β-normal form (to be eligible for partial credit, show each reduction step).

If already in normal form, write “normal form.” If it reduces infinitely, write “reduces infinitely.”

(a) [2 pts] x (λa. λb. b a) x (λy. y) — Hint: application is left-associative.

Solution. Normal Form

(b) [2 pts] ((λx. x x)(λy. y y))

Solution.

((λx. x x)(λy. y y))→β ((λy. y y)(λy. y y))

→β ((λy. y y)(λy. y y))

→β . . .

Reduces Infinitely

14

(c) [2 pts] ((λa. λb. a b c) x y)

Solution.

((λa. λb. a b c) x y)→β ((λb. x b c) y)

→β (x y c)

4. [3 pts] Write an OCaml expression that has the same semantics as the following λ expression.

(λa. λb. a b) (λx. x x) y

Solution. (fun a -> fun b -> a b) (fun x -> x x) y

15

7 Imperative OCaml

1. [7 pts] Given the mut_lst variable, which is ’a ref list, implement the add and contains functions

which should add a given element to mut_lst and check if the mut_lst contains a specified element,

respectively. You may add helpers and change the functions to be recursive.

let mut_lst = ref []

let add (ele : ’a) : unit =

let contains (ele : ’a) : bool =

Solution.

let add (ele : ’a) : unit =

mut_lst := ele :: (!mut_lst)

let contains (ele : ’a) : bool =

16

let rec helper lst =

match lst with

| [] -> false

| h :: t -> if (h = ele) then true else (helper t)

in helper !mut_lst

17

