CMSC 330, Fall 2018 - Midterm 2

Name \qquad

Teaching Assistant
Kameron Aaron Danny Chris Michael P. Justin Cameron B. Derek Kyle Hasan

Shriraj Cameron M. Alex Michael S. Pei-Jo

Instructions

- Do not start this exam until you are told to do so.
- You have 75 minutes for this exam.
- This is a closed book exam. No notes or other aids are allowed.
- For partial credit, show all your work and clearly indicate your answers.

Honor Pledge

Please copy and sign the honor pledge: "I pledge on my honor that I have not given or received any unauthorized assistance on this examination."

Section	Points
Programming Language Concepts	10
Finite Automata	23
Context-Free Grammars	18
Parsing	18
Operational Semantics	11
Lambda Calculus	13
Imperative OCaml	7
Total	100

1 Programming Language Concepts

In the following questions, circle the correct answer.

1. [1 pts] (T / F) The input to a lexer is source code and its output is an abstract syntax tree.

Solution. False.
2. [1 pts] (T / F) Any language that can be expressed by a context-free grammar can be expressed by a regular expression.

Solution. False.
3. $[1 \mathrm{pts}](\mathrm{T} / \mathrm{F}) \mathrm{OCaml}$ is Turing-complete.

Solution. True.
4. [1 pts] (T / F) Converting a DFA to an NFA always requires exponential time.

Solution. False.
5. [1 pts] (T/F) Recursive descent parsing requires the target grammar to be right recursive.

Solution. True.
6. [1 pts] (T / F) The SmallC parser in P4A used recursive descent.

Solution. True.
7. [1 pts] (T / F) The call-by-name and call-by-value reduction strategies can produce different normal forms for the same λ expression.

Solution. False.
8. [1 pts] (T / F / Decline to Answer) I voted last Tuesday. (All answers are acceptable.)

Solution. Any.
9. [1 pts] What language feature does the fixed-point combinator implement?
(a) Booleans
(b) Integers
(c) Recursion
(d) Closures

Solution. (c)
10. [1 pts] What is wrong with this definition of an NFA?

```
type ('q, 's) nfa = {
    qs : 'q list;
    sigma : 's list;
    delta : ('q, 's) transition list;
    q0 : 'q list;
    fs : 'q list;
}
```

(a) Allows states with multiple transitions on the same character.
(b) Allows ε-transitions.
(c) Allows multiple final states.
(d) Allows multiple start states.

Solution. (d)

2 Finite Automata

1. Use the NFA shown above to answer the following questions.

- [2 pts $] \varepsilon$-closure $(\{0\})=\{$

Solution. ε-closure $(\{0\})=\{0,1,3\}$

- $[2 \mathrm{pts}] \operatorname{move}(\{1\}, b)=\{$

Solution. move $(1, b)=\{2,3\}$
2. [1 pts] (T / F) Every NFA is also a DFA.

Solution. False
3. [1 pts] (T / F) Every DFA is also an NFA.

Solution. True
4. [5 pts] Draw an NFA that corresponds to the following regular expression: $\left(\left(a^{\star} b\right) \mid(a b)\right)^{\star}$

Solution.

5. [7 pts] Convert the following NFA into an equivalent DFA.

Solution.

6. [5 pts] Circle all of the strings that will be accepted by the above NFA. (Note: Not the DFA you generated)
(a) abbaa
(b) aaaa
(c) abbaabb
(d) abbbbaab
(e) aaaaa

Solution. (a), (c), (e)

3 Context-Free Grammars

1. $[6 \mathrm{pts}]$ Write a CFG that is equivalent to the regular expression $(w p)^{+} g^{\star}$

Solution.

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow w p X \mid w p \\
& Y \rightarrow g X \mid \varepsilon
\end{aligned}
$$

2. [6 pts] Create a CFG that generates all strings of the form $a^{x} b^{y} a^{z}$, where $y=x+z$ and $x, y, z \geq 0$.

Solution.

$$
\begin{aligned}
S & \rightarrow U L \\
U & \rightarrow a U b \mid \varepsilon \\
L & \rightarrow b L a \mid \varepsilon
\end{aligned}
$$

3. [6 pts] Given the following grammar, where S and A denote non-terminals, give a right-most and left-most derivation of $((100,33), 30)$. Show all steps of your derivation.

$$
\begin{aligned}
& S \rightarrow A \mid(S, S) \\
& A \rightarrow 100|33| 30
\end{aligned}
$$

Solution.

- Left-most,

$$
\begin{aligned}
S & \rightarrow(S, S) \\
& \rightarrow((S, S), S) \\
& \rightarrow((100, S), S) \\
& \rightarrow((100,33), S) \\
& \rightarrow((100,33), 30))
\end{aligned}
$$

- Right-most,

$$
\begin{aligned}
S & \rightarrow(S, S) \\
& \rightarrow(S, S) \\
& \rightarrow(S, 30)) \\
& \rightarrow(S, 30) \\
& \rightarrow((S, S), 30) \\
& \rightarrow((S, 33), 30) \\
& \rightarrow((100,33), 30)
\end{aligned}
$$

4 Parsing

1. $[3 \mathrm{pts}]$ Convert the following to a right-recursive grammar.

$$
\begin{aligned}
& S \rightarrow S+S \mid A \\
& A \rightarrow A * A \mid B \\
& B \rightarrow n \mid(S)
\end{aligned}
$$

Solution.

$$
\begin{aligned}
& S \rightarrow A+S \mid A \\
& A \rightarrow B * A \mid B \\
& B \rightarrow n \mid(S)
\end{aligned}
$$

2. [5 pts] What are the first sets of the non-terminals in the following grammar?

$$
\begin{aligned}
& S \rightarrow b c \mid c A \\
& A \rightarrow c A d \mid B \\
& B \rightarrow w S \mid \varepsilon
\end{aligned}
$$

Solution.

$$
\begin{aligned}
& \operatorname{first}(S)=\{b, c\} \\
& \operatorname{first}(A)=\{c, w, \varepsilon\} \\
& \operatorname{first}(B)=\{w, \varepsilon\}
\end{aligned}
$$

3. [10 pts] Finish the definition of a recursive descent parser for the grammar below. You need not build an AST, assume all methods return unit. Note that match_tok takes a string.

$$
\begin{aligned}
& S \rightarrow A b c \mid A \\
& A \rightarrow c A d \mid e
\end{aligned}
$$

```
let lookahead () : string =
    match !tok_list with
    | [] -> raise (ParseError "no tokens")
    | h::t -> h
let match_tok (a : string) : unit =
    match !tok_list with
    | h::t when a = h -> tok_list := t
    | _ -> raise (ParseError "bad match")
let rec parse_S () : unit =
```

and parse_A () : unit =

Solution.

```
let rec parse_S () : unit =
    let () = parse_A () in
    if lookahead () = "b" then
        let () = match_tok "b" in
        match_tok "c"
        else
            ()
and parse_A () : unit =
    if lookahead () = "c" then
        let () = match_tok "c" in
        let () = parse_A () in
        match_tok "d"
    else if lookahead () = "e" then
        match_tok "e"
    else
        raise (ParseError "parse_A")
```


5 Operational Semantics

$$
\begin{array}{cc}
A ; \text { false } \Rightarrow \text { false } & A ; \text { true } \Rightarrow \text { true } \\
\frac{A(x)=v}{} & \begin{array}{c}
A ; n \Rightarrow n \\
A ; x \Rightarrow v
\end{array} \\
\frac{A ; e_{1} \Rightarrow v_{1} A, x: v_{1} ; e_{2} \Rightarrow v_{2}}{A ; \text { let } x=e_{1} \text { in } e_{2} \Rightarrow v_{2}} \\
\frac{A ; e_{1} \Rightarrow n_{1}}{} A ; e_{2} \Rightarrow n_{2} n_{3} \\
A ; e_{1} \Rightarrow \text { true } A ; e_{2} \Rightarrow v \\
A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \Rightarrow v \\
& A ; e_{2} \Rightarrow \text { false } A ; e_{3} \\
A ; \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}
\end{array}
$$

Use the above rules to fill in the given constructions.

1. [6 pts]

Solution.

2. [5 pts]

$A ;$ let $x=4$ in let $x=5$ in $x \Rightarrow 5$

Solution.

$A ;$ let $x=4$ in let $x=5$ in $x \Rightarrow 5$

6 Lambda Calculus

1. [2 pts] Circle all of the free variables in the following λ expression. (A variable is free if it is not bound by a λ abstraction.)

$$
x(\lambda x \cdot(\lambda y \cdot \lambda z \cdot x y z) y)
$$

Solution.

$$
\underline{x}(\lambda x \cdot(\lambda y \cdot \lambda z \cdot x y z) \underline{y})
$$

2. [2 pts] Circle all of the following where the λ expressions are α-equivalent.
(a) $((\lambda a .(\lambda y . y a) y)$ and $(\lambda x . x y)$
(b) $(\lambda x \cdot(\lambda y \cdot x y))$ and $(\lambda y \cdot(\lambda x . y x))$

Solution. The (a) expressions not α-equivalent, but the (b) expressions are.
3. Reduce each λ expression to β-normal form (to be eligible for partial credit, show each reduction step). If already in normal form, write "normal form." If it reduces infinitely, write "reduces infinitely."
(a) $[2 \mathrm{pts}] \times(\lambda \mathrm{a} . \lambda \mathrm{b} . \mathrm{b}$ a) $\mathrm{x}(\lambda \mathrm{y} . \mathrm{y})$ - Hint: application is left-associative.

Solution. Normal Form
(b) $[2 \mathrm{pts}]((\lambda x . x x)(\lambda y . y y))$

Solution.

$$
\begin{aligned}
((\lambda x \cdot x x)(\lambda y \cdot y y)) & \rightarrow_{\beta}((\lambda y \cdot y y)(\lambda y \cdot y y)) \\
& \rightarrow_{\beta}((\lambda y \cdot y y)(\lambda y \cdot y y)) \\
& \rightarrow_{\beta} \ldots
\end{aligned}
$$

Reduces Infinitely
(c) $[2 \mathrm{pts}]((\lambda a \cdot \lambda b \cdot a b c) x y)$

Solution.

$$
\begin{aligned}
((\lambda a \cdot \lambda b \cdot a b c) x y) & \rightarrow_{\beta}((\lambda b \cdot x b c) y) \\
& \rightarrow_{\beta}(x y c)
\end{aligned}
$$

4. [3 pts] Write an OCaml expression that has the same semantics as the following λ expression.
$(\lambda a . \lambda b . a b)(\lambda x . x x) y$

Solution. (fun a $->$ fun b \rightarrow a b) (fun $\mathrm{x} \rightarrow \mathrm{x}$ x) y

7 Imperative OCaml

1. [7 pts] Given the mut_lst variable, which is 'a ref list, implement the add and contains functions which should add a given element to mut_lst and check if the mut_lst contains a specified element, respectively. You may add helpers and change the functions to be recursive.
let mut_lst = ref []
let add (ele : 'a) : unit =
let contains (ele : 'a) : bool =

Solution.

let add (ele : 'a) : unit =
mut_lst := ele :: (!mut_lst)
let contains (ele : 'a) : bool =

```
let rec helper lst =
    match lst with
    | [] -> false
    | h :: t -> if (h = ele) then true else (helper t)
in helper !mut_lst
```

