CMSC330 Fall 2016 Midterm #2 2:00pm/3:30pm Solution

Instructions

- 1. Do not start this test until you are told to do so!
- 2. You have 75 minutes to take this midterm.
- 3. This exam has a total of 100 points, so allocate 45 seconds for each point.
- 4. This is a closed book exam. No notes or other aids are allowed.
- 5. Answer short answer questions concisely in one or two sentences.
- 6. For partial credit, show all of your work and clearly indicate your answers.
- 7. Write neatly. Credit cannot be given for illegible answers.

	Problem	Score			
1	Finite Automata	/20			
2	Context Free Grammars	/16			
3	Parsing	/8			
4	OCaml	/20			
5	Programming Language Concepts	/12			
6	Operational Semantics	/10			
7	Lambda Calculus	/14			
	Total	/100			

1. Finite Automata (20 pts)

A. (5 pts) Convert the NFA in Figure 1 to a DFA.

B. (5 pts) Write a regular expression that accepts the same language as the NFA shown in Figure 1.

(((a|b)*) | ((a|b)+c?))*)* ((a|b)+c?)* (a|b|ac|bc)* (ac?|bc?)*

C. (5 pts) Construct a DFA or NFA that accepts the set of strings over $\{a, b\}$ that contain exactly two b's.

D. (5 pts) Reduce the following DFA to Regular Expression. (Hint: delete states 2, 1, and 0 in that order.)

(0 | (1(01*0)*1))*

2. Context Free Grammars (16 pts)

A. (3 pts) The following context-free grammar generates all strings of the form $a^x b^y$ for some x and y:

```
S \rightarrow aT
T \rightarrow aTbb|\epsilon
```

Define an equation relating x and y.

Solution: y = 2(x - 1)

B. (6 pts) Give a context-free grammar for binary number expressions involving &, +, and ~ (and, or, not)

- 1) Order of precedence (highest to lowest): ~, &, +
- 2) Associativity for & and + is left, ~ is unary
- 3) Parenthesis should be supported
- 4) Binary numbers can start with 0's (1 and 01 are valid)

Solution:

```
S \rightarrow S+T | T

T \rightarrow T \& U | U

U \rightarrow V | V \text{ (or } U \rightarrow U | V)
```

V -> B | (S) B -> 0C | 1C C -> 0C | 1C | ε

C. (4 pts) Let G be the context-free grammar

 $S \rightarrow aS \mid Sb \mid SS \mid ab$

Give a regular expression for the language of G. Prove that G is ambiguous. Then give an ambiguous grammar that generates the same language as G.

Model solution. A regular expression for the language of *G* is $(a^+b^+)^+$. There are two leftmost derivations of aabb, so the grammar is ambiguous:

 $S \Rightarrow aS \Rightarrow aSb \Rightarrow aabb$ $S \Rightarrow bS \Rightarrow aSb \Rightarrow aabb$

An unambiguous context-free grammar generating $(a^+b^+)^+$ can be obtained by eliminating the left-recursive productions:

 $S \rightarrow aS \mid aA$ $A \rightarrow bA \mid bS \mid b$

Note that $a(a | b)^*b$ is equivalent to $(a^+b^+)^+$.

D. (3 pts) Give a context-free grammar G that generates the language $L = L_1 \cup L_2$, where

 $L_1 = \{a^n b^n c^m : n, m > 0\}$ $L_2 = \{a^n b^m c^m : n, m > 0\}$

Model solution. The following context-free grammar generates L:

 $S \rightarrow XC \mid AY$ $X \rightarrow aXb \mid ab$ $Y \rightarrow bYc \mid bc$ $C \rightarrow cC \mid c$ $A \rightarrow aA \mid a$

3. Parsing (8 pts)

A. (3 pts) Consider the following context-free grammar: $S \rightarrow (A) \mid a$

 $\begin{array}{l} \mathsf{A} \rightarrow \mathsf{S} \; \mathsf{B} \\ \mathsf{B} \rightarrow ; \; \mathsf{S} \; \mathsf{B} \mid \epsilon \end{array}$

Compute the first sets of each non-terminal

FIRST(S) = {(, a} FIRST(A) = {(, a} FIRST(B) = {;, ε}

B. (5 pts) Consider the following CFG. $S \rightarrow E; S \mid E$ $E \rightarrow T O E \mid T$ $T \rightarrow n$ $O \rightarrow + \mid -$ Draw a parse tree for the string "n+n;n-n"

Answer:

			S				
	Е		;		S		
т	0	Е			Е		
n	+	Т		Т	0	Е	
		n		n	-	Т	
						n	

4. OCaml (20 pts)

A. (8 points) Write a function **combine** that, given a list of potentially overlapping intervals (pairs) sorted by the first element of each pair, return a list with the overlapping pairs from the original list having been combined.

combine [(1,3);(3,5);(7,9)] = [(1,5);(7,9)] combine [(1,3);(4,8);(5,9)] = [(1,3);(4,9)]

Let combine l =

B. (8 points) Write a function **rotate** that, given a list and a positive integer k, rotate the list k elements to the left. **You are allowed to use** "@" **to merge lists.**

rotate 2 [1;2;3;4;5] = [3;4;5;1;2]rotate 0 [1;2;3;4;5] = [1;2;3;4;5]rotate 8 [1;2;3;4;5] = [3;4;5;1;2]

2 points: base case 2 points: shifting the list 2 points: putting the list together correctly 2 points: syntax

C. (4 points) Using **fold** and/or **map**, write a function to compute the sum of squares each item in a list of **floating point** values.

square_sum [1.5;4.0;2.0] = 22.25 square_sum [1.0;2.0;3.0] = 14.00

5. Programming Language Concepts (12 pts)

A. (4 pts) The following code calculates 1+2+3+4...n. It is not tail recursive. Rewrite the function sum, so that it is tail recursive. (You are allowed to add nested helper functions) let rec sum n = if n=1 then 1 else n + sum(n-1)

let rec sum n =

```
let rec sumHelp n acc = if n = 0 then acc else sumHelp (n-1)
(n+acc) in
    sumHelp n 0
;;
```

B. (2 pts) Circle **all** of the statements that apply to the following OCaml pseudocode: let x = E1 in let x = E2 in E3

- a) In the scope of E1, x is bound
- **b)** In the scope of E2, x is bound
- c) The pseudocode contains an instance of shadowing
- d) The code is invalid, as there are multiple declarations of x

C. (1 pts) Which of the following statements is **NOT** true about a language with first-class functions?

- a) Functions can be passed in as arguments to other functions
- b) Functions can be returned as the result of calling other functions
- c) The language does not include imperative features
- d) The language treats functions on the same level as other data types

D. (1 pts) The fixed-point combinator is used to achieve _recursion_____.

E. (1 pts) _____ Static_____ type checking occurs during a program's compilation.

F. (1 pts) True / False Statically typed languages are type safe.

G. (2 pts) True / False I voted.

6. Operational Semantics (10 pts)

Use the language defined by the context-free grammar

and the operational semantics

to fill in the blank boxes in the following two derivations:

7. Lambda Calculus (14 pts)

A. Alpha Equivalence (2 point each): For each pair of expressions, determine if they are alpha equivalent. Circle "Equivalent" or "Not Equivalent".

 $\begin{array}{l} \lambda f. \; \lambda x. \; f \; (f \; x \; y) \; y \\ \lambda f. \; \lambda x. \; f \; (f \; x \; z) \; z \end{array}$

Equivalent

Not Equivalent

$$\begin{split} \lambda a. \; \lambda b. \; (\lambda a. \; a \; b) \; (\lambda b. \; b \; b) \; a \\ \lambda a. \; \lambda x. \; (\lambda a. \; a \; x) \; (\lambda b. \; x \; x) \; a \end{split}$$

Equivalent

Not Equivalent

B. Beta Reduction: Reduce each expression to normal form. If it reduces infinitely, state that it does not reduce.

(2 points) λx. (λz. z z x) a b

λx. a a x b

(3 points) (λx . λy . $y \times y$) (a b) (λm . a m)

a (a b) (λm. a m)

C. Operations on Church Numerals (5 points): Given the following definitions, prove that mult 2 * 0 = 0. Show all of your beta reductions and alpha conversions for full points.

Solution: $\lambda f.((\lambda a.\lambda b.a (a b)) ((\lambda \underline{c}.\lambda d.d) f))$

$$\begin{split} &-\beta \! > \lambda f.((\lambda \underline{a}.\lambda b.\underline{a} \ (\underline{a} \ b)) \ (\lambda d.d)) \\ &-\beta \! > \lambda f.(\lambda b.(\lambda \underline{d}.\underline{d}) \ ((\lambda d.d) \ b)) \\ &-\beta \! > \lambda f.(\lambda b.((\lambda \underline{d}.\underline{d}) \ b) \\ &-\beta \! > \lambda f.\lambda b.b \\ &-\alpha \! > = \lambda f.\lambda y.y = 0 \end{split}$$