
CMSC330 Fall 2015 Midterm #2 Solution
12:30pm/2:00pm/5:00pm

Name:

Discussion Time: 10am 11am 12pm 1pm 2pm 3pm
TA Name (Circle): Adam Maria Chris Chris Michael Candice

Amelia Amelia Samuel Josh Max

Instructions
· Do not start this test until you are told to do so!
· You have 75 minutes to take this midterm.
· This exam has a total of 100 points, so allocate 45 seconds for each point.
· This is a closed book exam. No notes or other aids are allowed.
· Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
· For partial credit, show all of your work and clearly indicate your answers.
· Write neatly. Credit cannot be given for illegible answers.

Problem Score

1 Finite Automata /20

2 Context Free Grammars /15

3 Parsing /10

4 OCaml /20

5 Programming Language Concepts /15

6 Operational Semantics /10

7 Lambda Calculus /10

Total /100

1

1. Finite Automata (20 pts)
a) (5 pts) Let L be the language accepted by the following regular expression

ab|((a|b)*a)

Give an NFA that accepts L. (Note that you can use page 4 for scratch paper)

Solution:

b) (5 pts) True or false: It is possible to design a DFA that can accept strings in the language

 L = { anbn | 0 ≤ n ≤ 4 },

i.e., all strings with up to four a’s followed by an equal number of b’s. If this statement is true,
show the DFA below. If false, explain why it is not possible.

2

Answer: The statement is true:

c) (5 pts) Give a DFA that is equivalent to the following NFA.
Solution:

d) (5 pts) Are the following two DFA’s equivalent? If not, give an example string that is
accepted by one, but not the other.

3

Answer: No, because in the original the automata does not accept the string “a”, but in the
second automata, it does.

4

2. Context Free Grammars (15 pts)
Consider the following context free grammar (where uppercase letters are non-terminals,
lowercase letters are terminals, and S is the start symbol).

S → Sa | TbS | cT | ScT
T → a | b

a) (6 pts) Indicate whether either or both of the following two strings are accepted by the
grammar. For each accepted string, give a derivation (aka a parse) from the start symbol
that shows the sequence of rewritings that accepts the string. You can alternatively provide a
parse tree.

 String Accepted? Derivation (if Accepted)

 abacb Y / N

Solution: No. S → TbS → abS → abS → ? (S cannot parse to “acb”)

 ababcaca Y / N

Solution: Yes. S → ScT → TbScT → TbTbScT → TbTbcTcT → ababcaca

b) (5 pts) Is the above grammar ambiguous? If so, give an example string that would be
parsed ambiguously.

Yes. If making both conversions S → TbS and S → ScT during a parse, they are
interchangeable.
S → TbS → abS → abScT → abcTcT → abcacT → abcaca
S → ScT → TbScT → abScT → abcTcT → abcacT → abcaca

5

c) (4 pts)

Which grammar has the incorrect precedence for + and * operations? Recall that
multiplication is higher precedence, so that a+b*a is equivalent to a+(b*a). Give a parse tree
for for a+b*a using the problematic grammar, and identify where the problem is.

Solution:Grammar 2 has the correct precedence for + and * operations. Grammar 1 can
generate parse three shown below, in which “+” has higher precedence than “*”.

6

Grammar 1:
E → E+T | E*T | T
T → a | b

Grammar 2:
E → E+T | T
T → T*P | P
P -> a | b

3. Parsing (10 pts)
This question will consider the following context-free grammar.

S → A | B
A → aSA | bB
B → c | d

a) (6 pts) Compute the frst sets of each non-terminal

FIRST(S) = { }

 FIRST(A) = { }

FIRST(B) = { }

Solution:
First(S) = { a, b, c, d }, First(A) = { a, b }, First(B) = { c, d }

For the next part you are given the following utilities for parsing.
lookahead Variable holding next terminal

match(x) Function to match next terminal to x

error() Signals a parse error

b) (4 pts) Consider the following pseudocode for the parse_S() function:

 parse_S() {
 if(lookahead == ‘a’ || lookahead == ‘b’) {
 parse_A();
 }
 else {
 parse_B();
 }
 }

Is this function correct? If not, indicate where the problem is and how to fx it.

Solution: It is correct. Another Another answer is to say that the else case should be else if
(lookahead == b) then { match(b); parse_B(); } else error(); But this is
actually equivalent to what’s there.If we assume parse_B will do error handling then yes, this
function is

correct. However, the most correct way to write the parser would be as
follows.

7

parse_S() {
 if (lookahead == ‘a’ | lookahead == ‘b’) {
 parse_A();
 } else if (lookahead == ‘c’ | lookahead == ‘d’) {
 parse_B();
 } else {
 error();
 }
}

4. OCaml (20 pts)

a) (10 pts) Write a function average that takes in a list of foats and returns the average value
of the elements in that list. (Recall that you should use the functions +. and /. for addition and
division on foating point values, respectively.) The function you write should be non-recursive,
and employ one call to fold (given below). If you implement it with more than one fold, or use
recursion, you will not receive full credit. You may not use any OCaml library functions.

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

Solution:
let average ls =
 let (sum,count) = fold (fun (x,y) h -> (x +. h, y +. 1)) (0.0,0.0) ls
in
 sum /. count;;

b) (6 pts) What will the variables result1 and result2 contain after executing this
code? If an exception is thrown before the result(s) is/are produced, indicate that.

8

let p l =
 let r = ref 0 in
 let rec helper ls a =
 match ls with
 [] -> a / !r
 | h::t -> r := !r + 1; helper t (a+h) in
 helper l 0;;

let result1 = p [];;
let result2 = p [1;2;3;6];;

Solution:
result1: Exception, Divide by zero result2: 3

c) (4 pts) Consider the following module type signature:

module type M1 =
 sig
 val f : int -> int -> int
 val g : 'a -> 'a list -> 'a list
end
;;

Given this, does the following code compile? If not, indicate where the problem is and the
type error that arises.

module M1impl : M1 =
 struct
 let f y z = y + z;;
 let g w l = (w + 1)::l;;
 let h x = x + 1;;
 end
;;

Solution: No, Signature mismatch. M1impl.y has type int -> int list -> int list which does
not match M1.y’s type of ‘a -> ‘a list -> ‘a list

5. Programming Language Concepts (15 pts)

9

True/false (3 points each) – circle T for true and F for false. You only have to answer 5 out
of 6 questions. If you wish, you may add explanation of your answer for partial credit, but note
that if you get the explanation wrong you may get the question wrong.

Solutions are in blue

T / F OCaml’s + operator is an example of ad hoc polymorphism.

T / F Variable names can be reused in diferent scopes.

T / F The Y combinator is used to encode numbers in the lambda calculus.

T / F An untyped language allows any operation to be performed on any data

T / F In Java, Integer extends Object, and ArrayList<T> extends
Collection<T>. As such, ArrayList<Integer> is a subtype of
Collection<Object>.

T / F In the following OCaml code, variable x is free within the body of the function g.

 let f x y =
 let rec g x z = x + y in
 g

10

6. Operational Semantics (10 pts)
a) Use the operational semantics rules given in class (copied on the last page of the exam for
your reference) to complete the missing parts of the hypotheses at each step.

i) (3 points)

 ______ ; x ⇒ ____ _____ ; ____ ⇒ 3
• ; 2 ⇒ 2 ______ ; x + 3 ⇒ 5
• ; let x = 2 in x + 3 ⇒ 5

Solution:
 • , x:2 ; x ⇒ 2 • , x:2 ; 3 ⇒ 3
• ; 2 ⇒ 2 • , x:2 ; x + 3 ⇒ 5
• ; let x = 2 in x + 3 ⇒ 5

ii) (4 points)

 ______ ; x ⇒ 5 ______ ; 2 ⇒ 2
•, y:5; (fun x → x + 2) ⇒ __________________ •, y:5; ___ ⇒ 5 ______ ; x + 2 ⇒ _____
•, y:5; (fun x → x + 2) y ⇒ _____

Solution:
 •, y:5, x:5 ; x ⇒ 5 •, y:5, x:5 ; 2 ⇒ 2
•, y:5; (fun x → x + 2) ⇒ (y:5 ; λ x.(x + 2)) •, y:5; y ⇒ 5 •, y:5, x:5 ; x + 2 ⇒ 7
•, y:5; (fun x → x + 2) y ⇒ 7

b) (3 points) Consider the operational semantics derivation given for part a(ii). Would the
derivation change if we were using dynamic scoping, rather than static scoping? If so,
describe (or mark) the change. If not, explain why it stays the same.

Solution: It stays the same. The reason is that both the environment stored in the closure
and the environment in which the function application is taking place are the same: •, y:5.
As such, the rule for dynamically scoped application and statically scoped application
nets the same result.

11

7. Lambda Calculus (10 pts)

a) (2 pts) Insert parentheses for the following λ-expression to clarify how it is parsed.

x y λx.x y

Solution:
((x y) (λx.(x y))))

b) (2 pts each) Reduce the following lambda terms as far as possible, and provide the fnal
result. If the term reduces infnitely, say so. Show the alpha conversions and beta reductions
you performed for partial credit.

i) (λw.w) (((λx.x) (λy.y)) (λz.z))

Solution: sequence of reduces is
((λx.x) (λy.y)) (λz.z)
(λy.y) (λz.z)
(λz.z)

ii) (λx.x x) (λx.x x) (λx.x)

Solution: Reduces Infnitely

iii) (λx.x (λx.y x)) (λz.z)

Solution: sequence of reduces is
 (λz.z) (λx.y x)
λx.y x

iv) (λx.x λy.y x) y

Solution: sequence of reduces is
 (λx.x λz.z x) y
y (λz.z y)

12

Operational semantics rules reference

13

	1. Finite Automata (20 pts)
	Answer: The statement is true:
	2. Context Free Grammars (15 pts)
	6. Operational Semantics (10 pts)
	7. Lambda Calculus (10 pts)
	a) (2 pts) Insert parentheses for the following λ-expression to clarify how it is parsed.
	b) (2 pts each) Reduce the following lambda terms as far as possible, and provide the final result. If the term reduces infinitely, say so. Show the alpha conversions and beta reductions you performed for partial credit.

