CMSC330 Fall 2015 Midterm \#2
 12:30pm/2:00pm/5:00pm

Name:

Discussion Time:	10am	11am	12pm	1pm	2pm	3pm
TA Name (Circle):	Adam	Maria	Chris	Chris	Michael	Candice
	Amelia	Amelia	Samuel	Josh	Max	

Instructions

- Do not start this test until you are told to do so!
- You have 75 minutes to take this midterm.
- This exam has a total of 100 points, so allocate 45 seconds for each point.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.

	Problem	Score
1	Finite Automata	-20
2	Context Free Grammars	_15
3	Parsing	/10
4	OCaml	-20
5	Programming Language Concepts	_15
6	Operational Semantics	_10
7	Lambda Calculus	_10
	Total	/100

1. Finite Automata (20 pts)

a) (5 pts) Let L be the language accepted by the following regular expression

$$
a b \mid\left((a \mid b)^{*} a\right)
$$

Give an NFA that accepts L. (Note that you can use page 4 for scratch paper)
b) (5 pts) True or false: It is possible to design a DFA that can accept strings in the language $L=\left\{a^{n} b^{n} \mid 0 \leq n \leq 4\right\}$,
i.e., all strings with up to four a's followed by an equal number of b's. If this statement is true, show the DFA below. If false, explain why it is not possible.
c) (5 pts) Give a DFA that is equivalent to the following NFA.

d) (5 pts) Are the following two DFA's equivalent? If not, give an example string that is accepted by one, but not the other.

(Scratch paper)

2. Context Free Grammars (15 pts)

Consider the following context free grammar (where uppercase letters are non-terminals, lowercase letters are terminals, and S is the start symbol).

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Sa}|\mathrm{TbS}| \mathrm{cT} \mid \mathrm{ScT} \\
& \mathrm{~T} \rightarrow \mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

a) (6 pts) Indicate whether either or both of the following two strings are accepted by the grammar. For each accepted string, give a derivation (aka a parse) from the start symbol that shows the sequence of rewritings that accepts the string. You can alternatively provide a parse tree.

String Accepted? Derivation (if Accepted)
abacb $\quad \mathrm{Y} / \mathrm{N}$
ababcaca Y / N
b) (5 pts) Is the above grammar ambiguous? If so, give an example string that would be parsed ambiguously.

$$
\begin{array}{ll}
\text { Grammar 1: } & \text { Grammar 2: } \\
\hline E \rightarrow E+T\left|E^{*} T\right| T & E \rightarrow E+T \mid T \\
T \rightarrow a \mid b & T \rightarrow T^{*} P \mid P \\
& P \rightarrow a \mid b
\end{array}
$$

c) (4 pts)

Which grammar has the incorrect precedence for + and * operations? Recall that multiplication is higher precedence, so that $a+b^{*} a$ is equivalent to $a+\left(b^{*} a\right)$. Give a parse tree for for $\mathbf{a + b *}$ a using the problematic grammar, and identify where the problem is.

3. Parsing (10 pts)

This question will consider the following context-free grammar.
$S \rightarrow A \mid B$
$A \rightarrow a S A \mid b B$
$\mathrm{B} \rightarrow \mathrm{c} \mid \mathrm{d}$
a) (6 pts) Compute the first sets of each non-terminal
FIRST(S) $=\{$ \}
$\operatorname{FIRST}(A)=\{\quad\}$
$\operatorname{FIRST}(B)=\{\quad\}$

For the next part you are given the following utilities for parsing.

lookahead	Variable holding next terminal
match (x)	Function to match next terminal to x
$\operatorname{error}()$	Signals a parse error

b) (4 pts) Consider the following pseudocode for the parse_S() function:

```
parse_S() {
    if(lookahead == 'a' || lookahead == 'b') {
        parse_A();
    }
    else {
        parse_B();
    }
}
```

Is this function correct? If not, indicate where the problem is and how to fix it.

4. OCaml (20 pts)

a) (10 pts) Write a function average that takes in a list of floats and returns the average value of the elements in that list. (Recall that you should use the functions + . and /. for addition and division on floating point values, respectively.) The function you write should be non-recursive, and employ one call to fold (given below). If you implement it with more than one fold, or use recursion, you will not receive full credit. You may not use any OCaml library functions.

```
let rec fold f a l =
    match l with
        [] -> a
    h::t -> fold f (f a h) t
```

b) (6 pts) What will the variables result1 and result2 contain after executing this code? If an exception is thrown before the result(s) is/are produced, indicate that.

```
let p l =
    let r = ref 0 in
    let rec helper ls a =
        match ls with
            [] -> a / !r
        | h::t -> r := !r + 1; helper t (a+h) in
    helper l 0;;
let result1 = p [];;
let result2 = p [1;2;3;6];;
result1:
result2:
```

c) (4 pts) Consider the following module type signature:

```
module type M1 =
    sig
        val f : int -> int -> int
        val g : 'a -> 'a list -> 'a list
end
;;
```

Given this, does the following code compile? If not, indicate where the problem is and the type error that arises.

```
module M1impl : M1 =
    struct
            let f y z = y + z;;
            let g w l = (w + 1)::l;;
            let h x = x + 1;;
    end
;;
```


5. Programming Language Concepts (15 pts)

True/false (3 points each) - circle T for true and F for false. You only have to answer 5 out of 6 questions. If you wish, you may add explanation of your answer for partial credit, but note that if you get the explanation wrong you may get the question wrong.

T / F OCaml's + operator is an example of ad hoc polymorphism.

T / F Variable names can be reused in different scopes.

T / F The Y combinator is used to encode numbers in the lambda calculus.

T / F An untyped language allows any operation to be performed on any data.

T / F In Java, Integer extends Object, and ArrayList<T> extends Collection<T>. As such, ArrayList<Integer> is a subtype of Collection<Object>.

T / F In the following OCaml code, variable \mathbf{x} is free within the body of the function \mathbf{g}.

```
let f x y =
    let rec g x z = x + y in
    g
```


6. Operational Semantics (10 pts)

a) Use the operational semantics rules given in class (copied on the last page of the exam for your reference) to complete the missing parts of the hypotheses at each step.
i) (3 points)

- ; let $x=2$ in $x+3 \Rightarrow 5$
ii) (4 points)
$\cdot, \mathrm{y}: 5 ;($ fun $\mathrm{x} \rightarrow \mathrm{x}+2) \Rightarrow \quad \cdot \mathrm{y}: 5 ; \quad \Rightarrow 5 \quad ; \mathrm{x} \Rightarrow 5 \quad ; \mathrm{x}+2 \Rightarrow \quad ; 2 \Rightarrow 2$
- y : 5 ; (fun $x \rightarrow x+2) y \Rightarrow$
b) (3 points) Consider the operational semantics derivation given for part a(ii). Would the derivation change if we were using dynamic scoping, rather than static scoping? If so, describe (or mark) the change. If not, explain why it stays the same.

7. Lambda Calculus (10 pts)

a) (2 pts) Insert parentheses for the following λ-expression to clarify how it is parsed.

x y $\lambda x . x$ y

b) (2 pts each) Reduce the following lambda terms as far as possible, and provide the final result. If the term reduces infinitely, say so. Show the alpha conversions and beta reductions you performed for partial credit.
i) $(\lambda w \cdot w)(((\lambda x . x)(\lambda y . y))(\lambda z . z))$
ii) $(\lambda x \cdot x x)(\lambda x \cdot x x)(\lambda x \cdot x)$
iii) $(\lambda x . x(\lambda x . y x))(\lambda z . z)$
iv) $(\lambda x . x \lambda y \cdot y x) y$

Operational semantics rules reference

Ain $\Rightarrow n$
A_{j} trove \Rightarrow It $\quad A_{j}$ false $\Rightarrow f f$

$$
\frac{A_{j} E_{1} \Rightarrow V_{1}}{A_{j} E_{1}+E_{2} \Rightarrow V_{j}+V_{2}} \Rightarrow V_{2} \quad \begin{aligned}
& A(x)=V \\
& A_{j} x \Rightarrow V
\end{aligned}
$$

$$
\begin{aligned}
& A_{j} E_{1} \Rightarrow V_{1} \quad A, x: V, j E_{2} \Rightarrow V_{2} \\
& A ; \text { let } x=E_{1} \text { in } E_{2} \Rightarrow V_{2}
\end{aligned} \quad A \text {; fun } x \rightarrow E \Rightarrow\left(A_{1} \lambda x, E\right)
$$

$$
A_{j} E_{1} \Rightarrow(A, \lambda x . E) A_{j} E_{2} \Rightarrow V_{1} \quad \text { A } ; x: V_{1} j E \Rightarrow V_{2}
$$

$$
A_{j} E_{1} E_{2} \Rightarrow v_{2}
$$

