
CMSC330 Spring 2019 Final Exam

Name (PRINT YOUR NAME as it appears on gradescope):

__

Instructions
● The exam has 18 numbered pages; make sure you have them all.
● Do not start this test until you are told to do so!
● You have 120 minutes to take this exam.
● This exam has a total of 130 points, so allocate 55 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

Problem Score

1 PL Concepts /8

2 OCaml /36

3 Ruby /15

4 Rust /15

5 Regexps, FAs, CFGs /22

6 Parsing /8

7 Security /12

8 Lambda calculus, operational semantics /14

 TOTAL /130

1

1. PL Concepts [8 pts]
Circle the T for each statement that is true, and F for those that are false.

Different implementations of the same abstract data type (ADT) can safely
interoperate

T / F

You can encode an object in a functional language using a record of closures

T / F

A type safe language is one in which well-typed programs cannot go wrong

T / F

When viewed as a uni-typed static system, a dynamic language’s type system
is, like most static type systems, sound but not complete

T / F

Finite automata can be used to define the syntax of valid Java arithmetic
expressions, but not the syntax of valid Java statements

T / F

The Rust language does not prevent memory management errors such as
use-after-free and double-free because it does not use garbage collection

T / F

The OCaml compiler can optimize tail recursive function calls to use less
memory

T / F

Copying garbage collection is slower than mark-sweep collection because it
requires tracing the entire heap, not just the parts that are still live

T / F

2

2. OCaml [36 pts]
A. [6 pts, 2 each] Write the types of the following OCaml definitions. Write “type error” if the
code doesn’t type check, and briefly give a reason why.

1. let f x y z = (x + y) :: z :: ['2']

2. let make () =

 let x = ref 0 in

 ((fun y -> let z = !x in x := !x + y; z),

 (fun () -> !x))

3. let bind f x = match x with

 None -> None

| Some n -> Some (f n)

B. [6 pts, 2 each] Provide expressions, without type annotations, that have the following types.

1. bool -> int -> int * int

2. 'a list -> 'b list -> ('a * 'b) list

3. rectangle -> float

 where

type rectangle = { width: float; length: float }

3

C. [6 pts, 2 each] Write the result of evaluating
the following OCaml expressions. If there is a
type error, write “type error” and briefly explain
why. (There are no syntax errors.) The
implementations of map and fold are given here.

1. map (fun x -> bind (fun y -> y + 1) x) [None; Some 2; Some 3; None]

 where bind is defined in part A.3, above

2. map (fun (x,y) -> if x > y then 0.0 else 1.0)

 [(1,2);(4.0,3.0);(true,false)]

3. fold (fun (x,m) (y,n) -> if x=y then (y,n+1) else (x,m))

 (1,1)

 [(2,1);(3,1);(1,2)];;

4

D. [8 pts] Implement the function multiplicity : 'a list -> ('a * int) list. The
output list of tuples (the multiplicity list) indicates how many times an element occurs in the input
list. The order of elements in the output list is unimportant. Examples:

multiplicity [true;true;false;false;true] = [(true,3);(false,2)]
multiplicity [1;2;5;2;3;1;1] = [(1,3);(3,1);(2,2);(5,1)]

You may implement multiplicity however you like, but here is a hint: Implement a helper
function ins : ('a * int) list -> 'a -> ('a * int) list, which takes a multiplicity list
and an element, and incorporates that element into the list. Your multiplicity function
repeatedly applies ins to the input list to produce the final result. You will get partial credit if you
implement ins even if you don’t get the whole answer.

5

E. [6 pts] Implement the function max_score : 'a list -> ('a -> int) -> int. This
function takes a list and a scoring function. The max_score function returns the maximal score
of the given list’s elements, or throws exception Failure "empty" if the input list is empty.
(Again, any OCaml language features or libraries may be used.)

Examples:

max_score [1;2;5] (fun x -> x) = 5

max_score [[1;2];[3;4];[6];[]] List.length = 2

F. [4 pts] Write a function you should pass to max_score so that it returns the maximal sum of
a given list of int lists. I.e., write a function foo (using any OCaml and libraries you like) so
the following calls work as written.

max_score [[0;5;-3];[8;2;-12];[1;1;4]] foo = 6

max_score [[1;3;4];[4;4;2]] foo = 10

6

3. Ruby [15 pts]
A. The Iribe Center is the hottest building on campus. Everyone wants to book their events
there. The CS department has been asked to create an automated system that will track
professors’ events, specified in a datafile. Each line of the provided datafile has 4 parts: room
number (can be either 3 or 4 digits long), last name (must start with a capital letter and all
subsequent letters must be lower case), date (given in mm/dd/yyyy format), and time (given in
hh:mm format). Each part is comma-separated, with one space after each comma and no space
before or after the colons. Below are some examples:

room:1250, name:Mamat, date:05/20/2019, time:09:30
room:130, name:Hicks, date:11/03/2019, time:12:05
room:2025, name:Eastman, date:09/01/2020, time:15:45
room:1250, name:Hicks, date:09/01/2020, time:10:15

1. [6 pts] add_to_system(datafile): This function should add each event given in datafile
to a hash named reservations, where the key is the room number of type String and the
corresponding value is an array of arrays, where the latter have the form [lastname, date,
time], each element of which is of type String. In your code you may call a function
valid_day_time(date,time) which takes a date as a String in mm/dd/yyyy format and a
time as a String in hh:mm format and returns true if they are legal, and false if not. Only
insert lines with a valid date and time into reservations. For example,
valid_day_time("50/20/1971","10:20") and valid_day_time("7/20/1970","25:20")
would both return false. Do not worry about double-booking a room due to overlapping events.
For the example datafile above, add_to_system would return the following reservations hash

reservations = { "1250" => [["Mamat", "05/20/2019", "09:30"],
 ["Hicks", "09/01/2020", "10:15"]],

"130" => [["Hicks", "11/03/2019", "12:05"]],

"2025" => [["Eastman", "09/01/2020", "15:45"]] }

 def add_to_system(datafile)

 reservations = {}

 IO.foreach(datafile) { |line|

 }

 return reservations

 end

7

2. [4 pts] get_events(reservations,name): Given the reservations hash returned by
add_to_system, and a professor’s name, return an array of that professor’s events, where each
event is an array [room#, date, time]. So, get_events(reservations,"Hicks") would
return [["1250","09/01/2020","10:15"], ["130","11/03/2019","12:05"]] for our example.

 def get_events(reservations, name)

 events = []

 return events

 end

3. [5 pts] busiest_day(reservations): This function should return the date (as a string) in the
given reservations hash with the largest number of events. If multiple dates have the same
maximal number of events, return any one of them. If the reservations hash is empty, return the
string "No Reservation Found". So, busiest_day(reservations) would return
"09/01/2020" for our example.

 def busiest_day(reservations)

 end

8

4. Rust [15 pts]
A. Using the code snippet below, answer problem A.1 and A.2. You can assume the code

compiles and that there are no ownership errors:
1 fn iribe(){

2 let x = vec![true, false, true];

3 let s1 = x;

4 let s2 = center(&s1);

5 let s3 = computing(s1);

6 println!("It’s {} not {}!", s2, s3);

7 }

8 fn computing(s4: Vec<bool>) -> bool {

9 s4[1..2].iter().fold(true, |a,b| a && *b)

10 }

11 fn center(s5: &Vec<bool>) -> bool {

12 s5.iter().fold(false, |a,b| a || *b)

13 }

1. [3 pts] What variables have ownership of the vector vec![true, false, true] at
any point during the call to iribe()?
 ⎕ x ⎕ s1 ⎕s2 ⎕s3 ⎕s4 ⎕s5

2. [2 pts] After the execution of which line would the vector vec![true, false, true]
dropped)?

9

B. [6 pts] Using the code snippet below, answer problem:
1 fn final(){

2 let s1 = 5;

3 for i in 0..5 {

4 s1 = s1 + 1;

5 }

6 let mut s2 = vec![4,5,6];

7 if s2[1] > 0 {

8 let s3 = 5;

9 }

10 let s4 = s2.get_mut(2);

11 *s4 += 1;

12 let s5 = s3 + s2.get(1).unwrap();

13 let mut s6 = vec![1,2,3];

14 let mut r = &s6;

15 r[0] += 1;

16 let st = Some(String::from("string"));

17 let rf = &st;

18 match rf {

19 Some(x) => println!("It's {}", (x+1)),

20 &None => println!("There's nothing.")

21 };

22 }

The above code has 5 mistakes in it. There are no syntax errors; all errors are either
type, lifetime, or borrow errors. Each error is on its own individual line. Find any 3 of the
5 errors and identify what type of error is being made. Write the line number of each
error and select the error type. No credit for any error beyond the first 3.

Line Number Error Type

__________ ⎕Type Error ⎕Lifetime Error ⎕Borrow Error

__________ ⎕Type Error ⎕Lifetime Error ⎕Borrow Error

__________ ⎕Type Error ⎕Lifetime Error ⎕Borrow Error

For reference, here are function signatures for some of the methods used above:
Vec<T>: fn get(&self, index: usize) -> Option<&T>

Returns the element of a slice at the given index, or None if the index is out of bounds.
Option: fn unwrap(self) -> T

Moves the value v out of the Option<T> if it is Some(v).
Vec<T>: fn get_mut(&self, index: usize) -> Option<&mut T>
Returns a mutable reference to an element at index; None if index is out of bounds.

10

C. [4 pts] Suppose we want to write a program manages a roster of students, implemented
as a vector. A student is defined by the following record:

struct Student {

 name:String,

 age:i32,

 uid:i64

}

Implement the function add_student, which adds a new student to the end of the given
roster vector, returning nothing. Only students of age 21 and older who are not
currently in the roster (based on their UID) should be added. Here is an example call:

add_student(&mut Vec::new(),

 Student {name: String::from("James"), age:18, uid:112345});

Write your code here:

fn add_student(roster:&mut Vec<Student>, student:Student) {

}

Some additional, useful Vector function names/prototypes, for your reference:
iter(), push(element:T), as_slice(), insert(index: usize, element:T),
len(), pop(), is_empty(), remove(index:usize)

11

5. Regex, FAs, and CFGs [22 pts]
A. [2 pts] Circle all of the strings that will be accepted by the regexp (a*b)|(ba).

ab aabba ababab b

B. [4 pts] Draw an NFA for the same regular expression (a*b)|(ba)

C.[4 pts] Given the following grammar, write a rightmost derivation of “(1+2)*3”, showing all
steps of the derivation.

S -> S + S | A
A -> A * A | N
N -> 1 | 2 | 3 | (S)

D. [4 pts] Rewrite the grammar in part C above so that it is unambiguous and can be parsed by
a recursive descent parser.

12

E. [3 pts] Write a regular expression with the alphabet Σ = {0,1} that exclusively accepts strings
that begin and end with 1 and if 0s occur in between, there must be at least two, consecutively.
Examples: 11, 1001, 11001, 1001001, 100011

F. [5 pts] Convert the following NFA into a DFA.

13

6. Parsing [8 pts]
A. [3 pts] For the following grammar, write out the first sets for each of the nonterminals

S -> iA | rBi
A -> eB | ε
B -> (S) | be | Ai

First(S) = { }

First(A) = { }

First(B) = { }

B. [5 pts] The following code implements a recursive descent parser. Write a CFG that
expresses the strings accepted by this parser.

exception ParseError of string

type tok = Tok_a | Tok_t | Tok_e | Tok_d

let (tok_list : tok list ref) = ref [];;

let lookahead () = match !tok_list with

 [] -> None

 | (h::t) -> Some h

let match_tok a = match !tok_list with

 (h::t) when a = h -> tok_list := t

 | _ -> raise (ParseError "bad match")

let rec parse_S () =

 match (lookahead()) with

 Some Tok_a -> match_tok Tok_a

 | Some Tok_t -> match_tok Tok_t; parse_S (); parse_E ()

 | _ -> raise (ParseError "parse error")

and parse_E () =

 match (lookahead()) with

 | Some Tok_e -> match_tok Tok_e; parse_S (); match_tok Tok_d;

 | Some Tok_d -> match_tok Tok_d

 | _ -> raise (ParseError "parse error")

14

7. Security [12 pts]
Recall Project 7, in which you were finding and fixing security issues in Spidey-Web, a cross
dimensional forum for the different spider-people to communicate with one another. These
questions will relate to the work you did there.

A. The initial version of Spidey-Web failed to perform any authentication at all, which meant
anyone could pretend to be any user on the system. One of your friends added the following
authentication function. It is called with user and passwd, both of which are inputs provided by
the site’s prospective users.

def authenticate(user, passwd)

 succ = false

 query = %{

 SELECT Password

 FROM Users

 WHERE User = '#{user}'

 }

 @db.execute(query) do |rec|

 succ = (passwd == rec[0])

 end

 assign_session user if succ

end

1. [2 pts] Circle the part of this function that is vulnerable; and name the vulnerability

category, here:

2. [2 pts] Fix the code by writing in the modifications to the affected lines to the right of the
code above. Strike through the entire problematic line, and write in the
replacement just to its right (but make sure we can still see any parts that you circled,
for part 1 above).

15

B. A new version of Spidey-Web will allow users to have message posting feature. Users are
able to post messages addressed to other users. Below is the function that implements this
feature, where Messages is a new database table that stores message conversations. Code in
main.rb ensures that any HTTP POST request to /messages will trigger the post_msg function.

def post_msg(user_from, user_to, session, msg)

 query = %{

 UPDATE Messages

 SET Msg = ?

 WHERE User = ?

 }

 @db.execute(query, ["#{user_to}: #{msg}", user_from])

 true

end

[6 pts, 3 each] There are (at least) two security problems with this code. Give their names here,
and briefly describe where and why they happen, and how to fix them.

Vulnerability Why it happens, and how to fix it

C. [2 pts] If Spidey-Web users were accessing the site in an Internet cafe using a standard Wi-Fi
network (e.g., in Starbucks), what sort of interactions with the Spidey-Web site are at risk, and
how could you address them?

16

8. Lambda Calculus, Operational Semantics [14 pts]
A. [2 pts] Consider the lambda calculus term (λx.(λy.y) x) ((λw.w) z). List its free variables, or
write none if there aren’t any.

B. [4 pts] Recall the grammar of lambda calculus abstract syntax trees:

e ::= x | λx.e | e e

The following is this grammar represented as an OCaml data type, as given in lecture:

type expr =

 | Var of string

 | Lam of string * expr

 | App of expr * expr

Give the expr value for the following lambda expressions (you might want to draw
parentheses first, explicitly). For example, for λx.x you’d write Lam ("x", Var "x").

1. λx.x y

2. (λx.x) λy.y

C. [2 pts] The lambda calculus beta reduction rule applies a function to an argument by
substituting the latter for the former’s parameter. A problem with beta reduction is that it can
capture free variables during substitution. Give an expression for which alpha conversion is
needed to avoid variable capture during an imminent beta reduction step.

17

D. [6 pts] When reducing a lambda calculus expression beta reduction can sometimes be used
in more than one place. For example, (λx.(λy.y) x) ((λw.w) z) can reduce three ways:

 (λx.(λy.y) x) ((λw.w) z) → (λx.x) ((λw.w) z) since (λy.y) x → x (A)

 (λx.(λy.y) x) ((λw.w) z) → (λx.(λy.y) x) z since ((λw.w) z) → z (B)

 (λx.(λy.y) x) ((λw.w) z) → (λy.y) ((λw.w) z) applying (λx…) to ((λw.w) z) (C)

We can use operational semantics to specify that evaluation can take place within different
sub-expressions of an expression. In total, there are four operational rules; here are two:

1. [1 pt] Rule 1 is normal beta reduction (it says to reduce by substituting e2 for x in e1). It
would apply to example (C), above, where (λx.(λy.y) x) matches the (λx.e1) part of the
rule and ((λw.w) z) matches the e2 part. Rule 2 states that if a reduction can happen in
the right half of an application, then the whole expression can reduce by rewriting the
right half. Which of the example reductions, (A) or (B), is a use of Rule 2?

2. [2 pts] Write the operational semantics rule that covers the example reduction
(A or B) you didn't pick for part 1. (The next part provides a hint.)

3. [3 pts] Recall that operational semantics rules often allow for a direct translation to an
interpreter. The function reduce below is an interpreter for the lambda calculus, using
the data type expr given in part B. The code for reduce currently has cases that
correspond to Rule 1 above, and the rule we asked you to write for part 2. Add code
that corresponds to Rule 2 above, in the indicated spot (and, optionally, any other
code you think is important for ensuring applications are handled completely).

let rec reduce (e:expr) : expr = match e with

 | App (Lam (x,e1), e2) -> subst e1 x e2 (* Rule 1 shown above *)
 | Lam (x,e1) -> let e1' = reduce e1 in Lam(x,e1')

 | App (e1,e2) -> (* FILL IN for Rule 2 *)

18

