

CMSC330 Spring 2018 Final Exam Solution

Name (PRINT YOUR NAME as it appears on gradescope):

Instructions
● The exam has 18 pages (front and back); make sure you have them all.
● Do not start this test until you are told to do so!
● You have 120 minutes to take this exam.
● This exam has a total of 120 points, so allocate 60 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

Problem Score

1 PL Concepts /8

2 Lambda Calculus /8

3 OCaml /28

4 Ruby /13

5 Rust /17

6 Regexps, FAs, CFGs /20

7 Parsing /10

8 Operational Semantics /6

9 Security /10

 TOTAL /120

1

1. PL Concepts [8 pts]

A. [6 pts] Circle T (true) or F (false) for each of the following statements (1 point each)

1. T / F If two OCaml modules implement the same abstract type, values

from one module can be used by the functions defined in the other.

2. T / F A type-safe programming language is one in which all well-defined

programs (i.e., those which can’t “go wrong”) are well-typed.

3. T / F In Rust, the borrower’s lifetime must not outlast the owner’s.

4. T / F OCaml does not require declaring variables with types, which

means it is dynamically typed.

5. T / F Reference counting can be used to reclaim cyclic garbage.

6. T / F The OCaml compiler can convert a tail-recursive method into a

loop, preventing stack overflow.

B. [2 pts] Multiple Choice (1 point each)

1. Which of these errors is still possible in a language with garbage collection?

a) Memory leak
b) Dangling pointer

c) Double free

d) Use after free

2. Which of the following OCaml features does not have an equivalent in Rust?

a) Records

b) Variant types (aka datatypes)

c) Garbage collection
d) Parametric polymorphism

2

2. Lambda Calculus [8 pts]

A. [1 pt] Circle all the free variables in the following expression.

 λx. (λs. s q) (λq. q x)

B. [3 pts] Reduce the following expression using the call-by-name (CBN) evaluation strategy.
Show all alpha conversions and beta reductions for full points.

(λx. x a b) ((λx.y) a)

=> ((λx.y) a) a b

=> y a b

C. [4 pts] Prove that Y F is equivalent to F (Y F) where Y is the fixpoint combinator, given below,
and F is an arbitrary lambda term. Two terms are equivalent if they beta-reduce to the same
term. For example, (λf.f) x y and (λf.f y) x are equivalent because they both beta-reduce to x y.
(Hint: beta-reduce Y F and check for a close equivalence to F (Y F) after each step.)

Y = λf.(λx.f (x x)) (λx.f (x x))

Y F = (λf.(λx.f (x x)) (λx.f (x x))) F

=> (λx.F (x x)) (λx.F (x x))
=> F ((λx.F (x x)) (λx.F (x x)))

F (Y F) = F ((λf.(λx.f (x x)) (λx.f (x x))) F)

=> F ((λx.F (x x)) (λx.F (x x)))

I.e., both beta-reduce to the same lambda-term, so they are equivalent.

3

3. OCaml [28 pts]

A. Write the types of the following OCaml expressions. If the expression doesn’t type check,
write “type error” and briefly give a reason why.

1. [2 pts]

fun a b c -> c::(a +. 2.0, b ^ "cat")

Type Error. The :: operator requires its right-hand argument to be a list, but (a
+. 2.0, b ^ "cat") is of type float * string

2. [2 pts]

fun x y -> y x x

‘a -> (‘a -> ‘a -> ‘b) -> ‘b

since y must be a curried, two-argument function that takes the type of x as its
argument, but neither the type of x or what y returns are further constrained

B. Provide expressions, without using type annotations, that have the following types. Use of
the List module is permitted.

1. [2 pts]

(int -> int) -> int

fun f -> (f 0) + 1

(this is just one possible answer)

2. [2 pts]

‘a list -> ‘a list -> (‘a * ‘a)

fun (h1::_) (h2::_) -> if h1 = h2 then (h1,h2) else (h2,h1)

(this is just one possible answer)

4

C. What is the result of evaluating the following OCaml expressions? If there is a type error,
write “type error” and briefly explain why. (There are no syntax errors.) We have provided the
implementation of fold for your convenience.

let rec fold f a l =
 match l with

 | [] -> a

 | h :: t -> fold f (f a h) t

1. [3 pts]

let reimann_sum lst_of_lst =

 fold (fun acc lst ->
 acc + fold (fun a h -> a * h) 1 lst) 0 lst_of_lst
in reimann_sum [[2;4]; [1;9]]

17

2. [3 pts]

type production = {nonterminal: string; conjunction: string list}

type grammar = production list

let rec help lst = match lst with

 | [] -> ""

 | [x] -> x ^ "\n"

 | h::t -> h ^ " | " ^ (help t)

let rec grammify gram = match gram with

 | [] -> ""

 | {nonterminal = s; conjunction = lst}::t ->

 s ^ " -> " ^ (help lst) ^ (grammify t);;

grammify [{nonterminal = "A"; conjunction = ["B";"ab"]};

 {nonterminal = "B"; conjunction = ["A";"cd"]}];;

“A -> B | ab

B -> A | cd”

(the expression evaluates to a string with a newline in the middle of it)

5

D. Recall that a multiset is a set that may contain duplicates (the number of duplicates of an
element is called its multiplicity). One possible implementation is to use regular lists:

type 'a bad_mset = 'a list

An example in this representation is ['a';'a';'b';'b';'c';'b';'b'], where the multiplicity
of 'a' is 2, the multiplicity of 'b' is 4, and the multiplicity of 'c' is 1. This representation is
memory-inefficient if we have a multiset with many duplicates. A multiset in which the multiplicity
of 'a' is 1000 would contain 1000 copies of 'a', wasting memory.

1. [3 pts] Write the type for a more efficient representation of a multiset whose storage is
proportional to the number of distinct elements, rather than the total count.

type 'a mset = (‘a * int) list

2. [5 pts] Implement the function mult xs e that returns the multiplicity of element e in
the multiset xs (and zero if it doesn’t exist). Use your mset type.

let rec mult (xs : 'a mset) (e : 'a) : int =

match xs with

 [] -> 0

| (el, ct)::t -> if el = e then ct else (mult t e)

6

3. [6 pts] Implement the function sum xs ys that returns the sum of two multisets. If zs
= sum xs ys, then zs has its elements drawn from xs and ys (i.e., zs is their union) and
the multiplicity of an element in zs is the sum of the multiplicities of that element in xs
and ys. Use your mset type from problem (D.1). You may also use your mult from
problem (D.2).

let rec sum (xs : 'a mset) (ys : 'a mset) : ('a mset) =

fold (fun acc (k, _) ->

 if (mult acc k) <> 0 then acc

 else (k, (mult a k) + (mult b k))::acc)

[] (a @ b)

7

4. Ruby [13 pts]
Thanos is taking 330 this semester and doesn’t have a passing grade going into the final. He
didn’t do this year’s Rust project because the TAs weren’t very helpful. He has devised a plan to
discover all the TAs who don’t know Rust and capture them all as punishment! As his assistant,
you will help him write a Ruby class RustIdentifer used to identify TAs and assemble this
list. Here are the methods of this class:

add(filename): [4 pts] opens a file and stores the information within a data structure of your
choosing. Each line of the filename consists of a TA’s name (all alphabetic letters, with the first
being uppercase), followed by a comma, followed by either “Y” or “N” depending on whether the
TA knows Rust or not. If there are duplicate names, occurrences past the first one should be
skipped. Illegal TA names should be skipped too. An example input file is as follows:

Omar,Y
Stephen,N
Timothy,N
Omar,N
Not-a-TA,Y

In the above example, Omar knows Rust (from the first occurrence, as the second is skipped),
and you should skip Not-a-TA (since it has non-alphabetic characters).

knowsNotRust(): [4 pts] returns an array of TAs who do not know Rust.

captureTAs(names): [5 pts] will traverse the structure and delete any TAs in the structure
whose name is in the input list names.

Note that you may or may not need to fill out the initialize() function, depending on your
approach.

8

class RustIdentifer

def initialize()

@data = {}

end

def add(filename)

File.foreach(filename) do |line|

if line =~ /^([A-Z][a-zA-Z]*),(Y|N)$/

if (not @data[$1]) # skip duplicates
@data[$1] = ($2 == “Y” ? true : false)

end

end # ignore ill-formatted names

end

end

def knowsNotRust()

return @data.select{|k, v| !v}.keys

end

def captureTAs(names)

@data.delete_if{|key,value| names.member?(key)}

end

end

9

5. Rust [17 pts]
The code snippet below is for part (a) and (b).

1 fn main() {

2 let nums = vec![1,2,3,4];

3 let sum = sum(&nums);

4 let prod = prod(nums);

5 println!("sum: {}, prod: {}", sum, prod);

6 }

7

8 fn sum(lst: &Vec<i32>) -> i32 {

9 lst.iter().fold(0,|a,h| a + h)

10 }

11

12 fn prod(lst: Vec<i32>) -> i32 {

13 lst.iter().fold(1,|a,h| a * h)

14 }

A. [2 pts] Which of the above functions has ownership of nums at any point during execution?

main, prod or both of these two

B.[2 pts] At which line will nums be freed? _____14_____

The code snippet below is for part (c)

1 fn main() {

 // Mistake 1 is here

2 let x = 1;

3 while x < 10 {

4 println!("x is {}",x);

5 x += 1;

6 };

 // Mistake 2 is here

7 let y = &x;

8 if y == 10 {

9 println!("y is 10")

10 }

 // Mistake 3 is here

11 let mut v = vec![1,2,3,4];

12 let g = v.get(1).unwrap();

13 *g += 1;

14 println!("g is {}",g);

10

 // Mistake 4 is here

15 let a = Some(String::from("330"));

16 let b = &a;

17 match b {

18 &Some(s) => println!("b is a reference to Some({})", s),

19 &None => println!("b is a reference to None")

20 };

 // Mistake 5 is here

21 let mut f = String::from("a string");

22 let mut mrf = &f;

23 mrf.push_str("modify");

24 println!("mrf is a mutable reference to {}", mrf);

35 }

C. [6 pts] The above code has 5 mistakes in it. There are no syntax errors; all errors are type
errors or borrow errors. Moreover, you can be sure that the compiler never employs the deref
coercion in this code. Each mistake is independent from the others, and is on a single line.

Find any 3 of the 5 errors. Write the line number of the error and rewrite the line to be
fixed. Your change should not change the intended functionality of the line (e.g., you can’t just
delete it). You will not receive credit for finding any mistakes beyond the first 3.

For reference, here are function signatures for some of the methods used above:

Vec<T>: fn get(&self, index: usize) -> Option<&T>

Returns the element of a slice at the given index, or None if the index is out of bounds.

Option<T>: fn unwrap(self) -> T
Moves the value v out of the Option<T> if it is Some(v).

String: fn push_str(&mut self, string: &str)
Appends the string slice str onto the end of this String.

Line Number Rewritten Line, with Fix

2 let mut x = 1;

8
OR
7

if *y == 10
OR
let y = x

12 v.get_mut(1).unwrap()

18 &Some(ref s) -> ...

11

https://doc.rust-lang.org/std/string/struct.String.html#method.push_str
https://doc.rust-lang.org/std/primitive.str.html

22 let mrf = &mut f;
OR
let mut mrf = &mut f;

let mut mrf = f

D.[7 pts] Write a function max that takes an immutable reference to a generic slice and returns a
tuple of the max value in the slice, and the index of that value. For reference, you can get an
Iterator from a slice, via a call to its iter() method, and the enumerate() method of such
an iterator returns an Iterator of (index, value) pairs.

fn max<T: PartialOrd + Eq> (lst: &[T]) -> (usize, &T) {
 assert!(!lst.is_empty());

 let mut idx = 0;

 for (i,y) in lst.iter().enumerate() {

 if y > &lst[idx] {

 idx = i;

 }

 }

 (idx,&lst[idx])

}

12

6. Regexps, FAs, CFGs [20 pts]

A. [4 pts] Draw an NFA for the following regular expression: ((ab)*b*) |

Answer:

B. [4 pts] Give a regular expression for all strings over the alphabet {a,b,c} that contain
exactly two a’s (and any number of b’s or c’s).

(b|c)*a(b|c)*a(b|c)*

13

C. [3 pts] Describe (as either a regex or in plain English) the strings that the following NFA
accepts:

An even number of b’s OR and odd number of a’s

D. [5 pts] Convert the above NFA to a DFA.

E. [4 pts] Write a context free grammar that generates the language:

axbycz , where y = x + z and x > 0 and z > 0

S -> AB
A -> aBb | ab
B -> bBc | bc

14

7. Parsing [10 pts]

A. [4 pts] Fix the following context free grammar so that it can be parsed by a recursive
descent parser (which, we remind you, is a kind of predictive parser).

S → bcA | bdA
A → Aa | a

S -> bT
T -> cA | dA
A -> aE
E -> aE | ε

B. [6 pts] Given the following code for a parser written in OCaml, write the grammar that is
being parsed. This code assumes tokens are strings, the lookahead() function returns the
topmost token x as Some x, and None if there are no tokens left; the match_tok(x) function
consumes the topmost token if it matches x and raises an error otherwise; and error() raises
an error unconditionally.

let rec parse_A () =

 if (lookahead () = Some "a") then

 (match_tok("a"); parse_S (); parse_A ())

 else if (lookahead () = Some "f") then

 match_tok("f")

 else

 error()

and parse_S () =

 if (lookahead () = Some "a" || lookahead () = Some "f") then

 (parse_A(); match_tok("b"); match_tok("c"))

 else if (lookahead () = Some "d") then

 (match_tok("d"); parse_S())

 else ()

S -> Abc | dS | ε
A -> aSA | f

15

8. Operational Semantics [6 pts]

A. [3 points] Given the following SmallC operational semantics rules from project 3, complete
the derivation of the statement below:

Int
A; n ⇒ n Assign-Int A; x = e ⇒ A[x↦n]1

A(x) = n A; e ⇒ n1

Bool-True
A; true ⇒ true Bool-False

A; false ⇒ false

If-True A; if (e) {s } {s } ⇒ A1 2 1

A; e ⇒ true A; s ⇒ A 1 1 If-False A; if (e) {s } {s } ⇒ A1 2 2

A; e ⇒ false A; s ⇒ A 2 2

 ●[x↦0](x) = 0 ●[x↦0]; 2 ⇒ 2

●[x↦0]; false ⇒ false ●[x↦0]; x = 2 ⇒ ●[x↦2]

●[x↦0]; if (false) {x = 1} {x = 2} ⇒ ●[x↦2]

B. [3 points] The following rule is part of the operational semantics for SmallC:

 A ; e ⇒ true
 A ; s ⇒ A 1

A ; while (e) { s } ⇒ A2

 A ; while (e) { s } ⇒ A 1 2

Explain this rule, in words. Your explanation should be something of the variety if under
environment A expression e evaluates to … then … etc.

If under environment A, expression e evaluates to true and statement s evaluates to
environment A1 AND If under environment A1, while (e) {s} evaluates to environment A2 THEN
under environment A, while (e) {s} evaluates to environment A2.

16

9. Security [10 pts]

A. [2 pts] Why do secure websites (e.g., Google, Stark Industries) store the hash of your
password instead of the password itself (i.e. what scenario(s) does this protect against)? Limit
your answer to 2-3 sentences.

In the event that an attacker gets access to the password database (e.g., through an attack like
SQL injection), they will obtain the hashes of the passwords instead of the passwords
themselves. Since it is hard to determine the original passwords from their hashes (secure
cryptographic hash functions are one-way functions), hashing offers another layer of protection.

B. [2 pts] Circle TRUE or FALSE for each statement:

1) Stored XSS attacks are usually carried out with specially crafted URLs.

TRUE FALSE

2) Cookies are pieces of data stored in the browser sometimes used to identify an
authenticated client to a server.

TRUE FALSE

C. StarkServe is a new service at Stark Industries. The service is a simple Ruby server that acts
as a remote Ruby shell. It allows you to send it a Ruby command and it sends back the output
from executing it, similar to a what a stateless top-level Ruby interpreter (irb) would do. The
server works by passing your command its method interpret (shown below). This method
runs the command and returns its output. StarkServe is running on a server with sensitive
corporate secrets that it doesn’t want users to be able to read, modify or destroy.

def interpret(data)

#returns array of size 3 containing the standard output,

#standard error, and exit status

stdout, stderr, status = Open3.capture3("ruby -e \"#{data}\"")

if status == 0

stdout

else

stderr

end

end (go to next page)

17

Example usage (input in normal case, output in italics):
$ nc 192.168.239.245 1324

Welcome to StarkServe! You may send any input and StarkServe will interpret

it for you!

puts \“hello world\”

Output: hello world

if false then puts \"true\" else puts \"false\" end

Output: false

[2 pts] Which class of vulnerability (or vulnerabilities) is StarkServe vulnerable to and why?

Command Injection, due to the lack of input sanitization.

[2 pts] Give or describe input that would exploit a StarkServe vulnerability.

" ; rm -r *

system('rm -r *')

[2 pts] State two techniques that could be used to fix the vulnerability. Be specific to this case,
pointing to the code if you think it will help.

Whitelisting - define a list of allowed inputs and only allow an input if it is within the list

Blacklisting - have a list of characters that are not allowed and reject any input with one of
these characters OR remove these characters from the input

One or the other of these should be done right after the two comments in the beginning of
interpret

END OF EXAM

18

