
CMSC 330, Fall 2018 — Final

Name

Teaching Assistant

Kameron Aaron Danny Chris Michael P. Justin Cameron B. Derek Kyle Hasan

Shriraj Cameron M. Alex Michael S. Pei-Jo

Instructions

• Do not start this exam until you are told to do so.

• You have 120 minutes for this exam.

• This is a closed book exam. No notes or other aids are allowed.

• For partial credit, show all your work and clearly indicate your answers.

Honor Pledge

Please copy and sign the honor pledge: “I pledge on my honor that I have not given or received any

unauthorized assistance on this examination.”

Section Points

Programming Language Concepts 8

λ-Calculus 8

OCaml 28

Ruby 13

Rust 17

Regexp, FA, CFG 20

Parsing 10

Operational Semantics 6

Security 10

Total 120

1

1 Programming Language Concepts

1. [1 pts] (T / F) Both Rust and OCaml allow a programmer to manually manage memory.

2. [1 pts] (T / F) Reference counting garbage can collect cyclic dead objects.

3. [1 pts] (T / F) Traits in Rust are analogous to interfaces in Java.

4. [1 pts] (T / F) Languages that perform “bounds checking,” like Java, on read or write attempts are less

vulnerable to buffer overflow attacks than ones that don’t (such as C).

5. [2 pts] Circle all of the following programming language features that Ruby has:

(a) Dynamic Typing (b) Static Typing (c) Lexical Scoping (d) Dynamic Scoping

6. [2 pts] Given the definitions of fold_left and fold_right below, which function would you use if you

were trying to sum a list of one million elements and why? Be brief.

let rec fold_left f a xs =

match xs with

| [] -> a

| x :: xt -> fold_left f (f a x) xt

let rec fold_right f xs a =

match xs with

| [] -> a

| x :: xt -> f x (fold_right f xt a)

2

2 λ-Calculus

1. Circle T if the expressions are α-equivalent and F otherwise.

(a) [1 pts] (T / F) (λy. y) y λy. y y

(b) [1 pts] (T / F) (λy. y) y (λx. x) x

2. [2 pts] Write a λ expression that has no normal form.

3. [4 pts] Reduce the λ expression to β-normal form (to be eligible for partial credit, show each reduction

step). If already in normal form, write “normal form.” If it reduces infinitely, write “reduces infinitely.”

(λx. (λx.x x)) a (λy.y) c

3

3 OCaml

You may use map, fold_left, and fold_right on any of the following questions.

1. [8 pts] The unfoldr function generates a list of values from a function (the generator) and an initial value

(the seed). The generator returns 'a * 'b option, and should be called repeatedly to build up the list.

When the generator returns None, the list is finished. When it returns Some, the first value of the tuple

should be added to the list, and the second value of the tuple should be used as the next seed.

let f seed = if seed <= 4 then Some (seed, seed + 1) else None

unfoldr f 1 = [1; 2; 3; 4]

unfoldr f 3 = [3; 4]

Implement unfoldr below.

let rec unfoldr (f : 'a -> ('b, 'a) option) (seed : 'a) : 'b list =

2. [5 pts] The Iverson bracket function converts a predicate into a function that returns 0 if the predicate is

not satisfied and 1 if it is.

let even_pred x = (x mod 2) = 0

let even_iver = iver even_pred

Given the above, even_iver 4 = 1 and even_iver 5 = 0. Implement iver below.

let iver (p : ('a -> bool)) : ('a -> int) =

4

3. [10 pts] The prime-counting function prime_count returns the number of primes less than or equal to n.

Assuming there exists a predicate prime that determines if a number is prime, implement prime_count

without making prime_count itself recursive. You will receieve at most 1
2 credit if you make prime_count

itself recursive. (Hint: Use unfoldr and iver above).

let prime_count (n : int) : int =

4. [5 pts]

type 'a non_empty_list =

| End of 'a

| Cons of ('a * 'a non_empty_list)

Given the above type declaration of non_empty_list, write a function length that calculates the length

of a non_empty_list l.

length (End 1) = 1

length (Cons ('d', Cons ('u', Cons ('c', End 'k')))) = 4

Implement length below.

let rec length (l : non_empty_list) : int =

5

4 Ruby

The school’s rubber duck population has been getting out of hand. You have been tasked with writing

software in order to bring it under control. On the next page, implement the class DuckSorter that will

read a text file and allow you to search for duck’s with a given attribute.

1. [7 pts] Implement the initalize method that takes a filename then reads and stores the information

about the rubber ducks in a data structure of your choice. If a duck’s name appears multiple times in

the file, the attribute list should be combined together. If a line is malformed, it should be ignored.

2. [2 pts] Implement the attributes method that takes a duck’s name and returns an array of all that

duck’s attributes. Order doesn’t matter, but every element in this list should be unique. You may assume

that the duck exists.

3. [4 pts] Implement the search method that takes a string as an argument containing a single attribute

and returns an array of rubber duck names where every duck in the array has the given attribute. Order

doesn’t matter. If no ducks contain the given attribute, an empty array should be returned.

Here is an example of an input file called ducks.txt:

name: Fenton, attributes: large, winter

name: Santa, attributes: winter, red, hat

name: Edward, attributes: small, glasses

name: Fenton, attributes: large, blue

All names will begin with a capital letter and be followed by lowercase letters. An attribute will be all

lowercase and attributes will be separated by a comma and a space. Each line of the text file will have a

duck name and a list of attributes. Here is an example of a program using the above methods.

a = DuckSorter.new("ducks.txt")

puts a.get_attributes("Fenton").inspect

puts a.search("winter").inspect

puts a.search("large").inspect

This will output:

["large", "winter", "blue"]

["Fenton", "Santa"]

["Fenton"]

6

class DuckSorter

def initalize(filename)

IO.foreach(filename) { |line|

}

end

def get_attributes(name)

end

def search(attribute)

end

end

7

5 Rust

1. [3 pts]

fn quack(s1 : String) -> () {

{

let s2 = &s1;

let s3 = &s1;

}

let s4 = s1;

let s5 = s4;

let s6 = &s5;

let s7 = s5;

let s8 = &s7;

// HERE

}

Who is the owner of the data from s1 at HERE?

2. The following programs have an error. Rewrite the code next to the snippet so there is no error.

(a) [3 pts]

fn quack(s1 : String) -> () {

s1.push_str(" QUACK");

println!("Duck says: {}", s1);

}

(b) [4 pts]

fn shortest(x : &str, y : &str) -> &str {

if x.len() < y.len() { x } else { y }

}

8

3. [7 pts] For the given Duck struct, write a function oldest that takes an immutable reference to a vector

of Duck and returns a reference to the oldest one. You may get an Iterator from a vector via a call to

its iter function. You may also assume the input vector is non-empty.

struct Duck {

name: String,

age: i32

}

fn oldest (ducks : &Vec<Duck>) -> &Duck {

}

9

6 Regexp, FA, CFG

1. [3 pts] Write a regular expression that describes all the strings over the alphabet {d, u, c, k} where u

appears exactly once.

2. [3 pts] Draw an NFA that is equivalent to the regular expression: (d | u)⋆(ck)⋆

3. [5 pts] Write a CFG that accepts strings of the form dauckbs where a = b+ 1 and a, b ≥ 1.

4. [3 pts] Write a regular expression that accepts the same set of strings as the following CFG. If this is not

possible, explain.

S → AB

A → Aquack | quack

B → X | Y

X → duX | ε

Y → ckY | ε

10

5. [6 pts] Convert the following NFA to a DFA.

1

2

3

4

5

6

7

8

9

ϵ

ϵ

d ϵ

u

c

k

ϵ

ϵ

ϵ

11

7 Parsing

1. Refer to the following ambiguous grammar for the next two questions:

S → S + S | a

(a) [1 pts] Identify why the grammar is ambiguous (you do not have to prove with derivations).

(b) [2 pts] Modify the grammar so that it is no longer ambiguous without changing what strings the

language accepts.

2. S-expressions are a notation used to represent list and tree-like data. Refer to the following S-expression

grammar for the next two questions:

S → (S.S) | [L] | n

L → SL | ε

(a) [2 pts] What are the first sets for the nonterminals in the grammar?

first(S) = { }

first(L) = { }

(b) [5 pts] Finish the definition of a recursive descent parser for S-expressions on the next page. You

need not build an AST, assume all methods return unit. Note that you are provided the functions

match_tok : string -> unit and lookahead : unit -> string.

12

For reference, here is the grammar again.

S → (S.S) | [L] | n

L → SL | ε

Fill in parse_S and parse_L below.

let lookahead () : string =

match !tok_list with

| [] -> raise (ParseError "no tokens")

| h::t -> h

let match_tok (a : string) : unit =

match !tok_list with

| h::t when a = h -> tok_list := t

| _ -> raise (ParseError "bad match")

let rec parse_S () : unit =

and parse_L () : unit =

13

8 Operational Semantics

1. [4 pts] Using the rules given below, show: A; if 5 > 3 then 3− 2 else 5− 1 ⇒ 1

A; false ⇒ false A; true ⇒ true

A; n ⇒ n

A(x) = v

A; x ⇒ v

A; e1 ⇒ n1 A; e2 ⇒ n2 v is n1 > n2

A; e1 > e2 ⇒ v

A; e1 ⇒ n1 A; e2 ⇒ n2 n3 is n1 − n2

A; e1 − e2 ⇒ n3

A; e1 ⇒ true A; e2 ⇒ v

A; if e1 then e2 else e3 ⇒ v

A; e1 ⇒ false A; e3 ⇒ v

A; if e1 then e2 else e3 ⇒ v

A; if 5 > 3 then 3− 2 else 5− 1 ⇒ 1

2. [2 pts]

A; n ⇒ n

A(x) = v

A; x ⇒ v

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2
A; let x = e1in e2 ⇒ v2

A; e1 ⇒ n1 A; e2 ⇒ n2 n3 is n1 + n2

A; e1 + e2 ⇒ n3

Use the above rules to fill in the given construction:

A, x = 4, y = 5, x = 3 (x) =

A, x = 4, y = 5, x = 3; x ⇒
A, x = 4, y = 5, x = 3; (y) = 5

A, x = 4, y = 5, x = 3; y ⇒ 5

A, x = 4, y = 5, x = 3; x+ y ⇒

14

9 Security

1. [1 pts] (T / F) A web application is protected from SQL injections by SQL prepared statements.

2. [1 pts] (T / F) If a language is statically typed, the compiler prevents buffer overflows.

3. [1 pts] (T / F) An XSS vulnerability allows an attacker to execute shell commands on a server.

4. [1 pts] Briefly describe how you would prevent an XSS attack.

5. [2 pts] What are the two different types of XSS attack? What is the difference between them?

6. DUCK Corp. has written this fantastic server:

puts "Welcome to the DUCK Corp. Terminal."

puts "Do well on your CMSC 330 final to get in."

while true do

puts "Enter file in the current directory to view: "

file = gets.chomp

if file =~ /\.\./

print "You can only view files in the current directory."

else

`cat #{file}` # runs shell command cat

end

end

(a) [1 pts] Name the vulnerability that exists in this code.

(b) [1 pts] Name a fix that could prevent this vulnerability.

(c) [2 pts] Enter a user input that could cause damage to the DUCK Corp.

15

