
CMSC330 Spring 2019 Midterm 1
9:30am/ 11:00am/ 3:30pm

Solution
Name (PRINT YOUR NAME as it appears on gradescope)”

Instructions

● Do not start this test until you are told to do so!
● You have 75 minutes to take this midterm.
● This exam has a total of 100 points, so allocate 45 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

 Problem Score

1 Programming Language Concepts /10

2 Ruby Regular Expressions /10

3 Ruby Execution /17

4 Ruby Programming /18

5 OCaml Typing /14

6 OCaml Execution /13

7 OCaml Programming /18

 Total /100

1

1.[10 pts] Programming Language Concepts

Circle your answer

A. Tuples in OCaml are similar to structs in C in that they are both fixed-sized collections of
heterogeneous data. (T / F)

B. Ruby has type inference for its variables. (T / F)

C. In dynamically typed languages, type errors may go unnoticed if they are inside rarely
used conditional branches. (T / F)

D. A let...in expression in Ocaml is used to define a named local expression.
(T / F)

E. Because of dynamic type checking, Ruby allows programs with type errors to run.
(T / F)

F. Ruby arrays can hold different objects and dynamically resizable.

(T / F)

G. Both Procs in Ruby and functions in OCaml have “first class” status; e.g., they can be
passed to and returned from methods/functions. (T / F)

H. If two objects are structurally equal, they must be physically equal too.

(T / F)

I. A closure consists of function code and bindings for its free variables.

(T / F)

J. Compiled languages typically run slower than interpreted languages because of the
extra overhead of converting source code to machine code at runtime.

(T / F)

2

2. [10 pts] Ruby Regular Expressions

A. (2 pts) What is the output of the following?
"I am Groot!" =~ /^\w+ \w+ (\w+).$/

puts $1

 Answer: Groot

B. (4 pts) Write a Ruby regular expression that matches dates of the form MM/DD/YYYY.
MM and DD can be ONE or TWO digits (they do not need to be valid months or days
respectively, see examples below). YYYY must be exactly FOUR digits. The regex must
match the string exactly.

Examples:

7/4/1776
6/23/1998
12/25/0000
5/16/2019 (This is the date of your final!)
99/99/9999 (This is valid format, although not a valid month or day)

 Answer: /^\d{1,2}\/\d{1,2}\/\d{4}$/
 Other answer: /^(\d{1}|\d{2})\/(\d{1}|\d{2})\/\d{4}$/
 Other answer: /^\d\d?\/\d\d?\/\d{4}$/

C. (4 pts) Circle all those strings that match the regular expression
/[A-Z]+[a-z]*:\s?[0-5]+$/. Put another way, circle each string s for which
s =~ /[A-Z]+[a-z]*:\s?[0-5]+$/ does not return nil.

123Anwar: 12 eastman: 34 CMSC:330 Mike: 56

3

3. [17 pts] Ruby Execution
Write the printed output of the following code snippets

1. (3 pts)
x = [1, 1, 2, 3, 5]

puts x[0]

puts x[5]

y = [1, 1, 2, 3, 5]

puts x == y

Answer: 1
 Nil (empty string also accepted)
 true

2. (3 pts)

grades = {"Alice" => 0, "Bob" => 4, "Chris" => 3 }

if grades["Alice"] then

grades["Alice"] = 2

end

puts grades["Alice"]

sum = 0

grades.keys.each {|k| sum = sum + k.length }

puts sum

Answer: 2
 13

3. (3 pts)

def math(x)

if x % 2 == 0

puts yield(x)

else

puts yield(x+1)

end

end

math(10) {|z| z+10}

math(3) {|z| z*3}

math(0) {|z| z-4}

Answer: 20
 12

 -4

4

4. (4 pts)

h = { 1 => “cat”, 2 => “squirrel”, 3=>"chicken" }

x = h.keys.collect{|k| h[k] }

puts x[1]

Answer: “squirrel”

5. (4 pts)

class ToolchainManager

 @@x = []

 def initialize(version)

 @@x.push(version)

 @count = 1

 end

 def update()

 @@x.push(@count)

 @count += 1

 end

 def to_s

 @@x.length.to_s + "," + @count.to_s

 end

end

cargo = ToolchainManager.new("1.33.0")

puts cargo

cargo.update()

puts cargo

cargo.update()

puts cargo

cult = ToolchainManager.new("1.33.5")

puts cult

Answer: 1,1
 2,2

 3,3

 4,1

5

4. [18 pts] Ruby Programming
Implement an HashStack class. HashStack is a like a hash, but if you add a mapping for a key
that’s already in the HashStack, it remembers the old mapping and pushes the new one, like a
stack. When you remove an entry, the old mapping is restored.

(7pts) insert(k, v) adds a mapping from k to v in your HashStack instance. If a mapping for
k already exists, the new mapping overrides it, but the old mapping is remembered. Return nil
for a fresh mapping; if overriding an existing mapping, return the old value.

(7pts) remove(k) removes the most recent mapping for k, returning the value component of it. If
a mapping for k doesn’t exist, return nil.

(4pts) find(k) returns the value most recently mapped to by k. If a mapping for k doesn’t exist,
return nil. Leaves the existing mapping(s) in place.

Here is an example session with a HashStack.

irb(main):003:0> m = HashStack.new

=> #<HashStack:0x00007ff518868f70 @h={}>

irb(main):004:0> m.insert("a",2)

=> nil

irb(main):005:0> m.insert("b",3)

=> nil

irb(main):006:0> m.find("b")

=> 3

irb(main):008:0> m.insert("a",3) # overrides existing mapping

=> 2

irb(main):009:0> m.find("a")

=> 3

irb(main):010:0> m.remove("a")

=> 3

irb(main):011:0> m.find("a")

=> 2

irb(main):012:0> m.remove("a")

=> 2

irb(main):013:0> m.find("a")

=> nil

irb(main):015:0> m.remove("b")

=> 3

6

class HashStack

 // DO NOT modify the initialize method

 def initialize

 @h = {}

 end

 def insert(k, v)

if (@h[k])

x = @h[k][@h[k].length - 1]

@h[k].push(v)

return x

else

@h[k] = [v]

return nil

end

 end

 def remove(k)

if(@h[k])

x = @h[k].pop

if(@h[k] == [])

@h.delete(k)

end

return x

end

nil

 end

 def find(k)

if(@h[k])

return @h[k][@h[k].length - 1]

end

nil

 end

end

7

5. [14 pts] OCaml typing
A. (6 pts) Write an expression of the following type without using type annotations

a. float * (float list) * string

Answer: (1.0, [1.0], “hi”) (or other correct answer)

b. float -> float list -> float list

Answer: fun a b -> (a +. 1.) :: b

c. int -> ‘a -> ‘a

Answer: fun a b -> if a = 1 then b else b

B. (8 pts) Give the type that OCaml will infer for f in each of the following. If there is a type

error, circle where the issue is and explain

a. let f x = x * 4

Answer: int -> int

b. let f a b = (a::b)::[b]

Answer: ‘a -> ‘a list -> ‘a list list

c. type vector = { x : int; y : int }

let f v a = v.x > a

Answer: vector -> int -> bool

d. type int_option = Nothing | Something of int

let f = fun a -> match a with

 Nothing -> 0

| Something i -> []

Answer: Type error: Every branch of the match statement must be the same
type.

8

6. [13 pts] OCaml Execution

Give the value of the final expression in each of the following. If there is a type error, show
where. If an exception is raised, say what it is.

A. (2 pts)

let rec f l =

 match l with

 [] -> []

 | h1::h2::t -> (h1*h2)::(f t);;

f [1;2;3;4;5;6]

Answer: [2;12;30]

B. (2 points)
let f2 f x y =

 if (f x y) = 0 then 1

 else 0;;

f2 (fun a b -> a*b) 10 0

Answer: 1

C. (3 points)
let f (m, s) x =

 if (x > m) then (x, s+x)

 else (m, s+x);;

fold f (0,0) [10;3;8;0]

Answer: (10, 21)

9

D. (2 points)
let f a = a * 2;;

map f [1; 2; 3; 4; 5]

Answer: [2;4;6;8;10]

E. (4 points)
type float_tree =

 Leaf

| Node of float_tree * float_tree * float;;

let t1 = Leaf ;;

let t2 = Node(Node(Leaf, Leaf, 5.0), Leaf, 4.0) ;;

let t3 = Node(Leaf, Leaf, 3.0) ;;

let tree_func t =

 match t with

 Leaf -> false

 | Node(l,r,f) -> l = Leaf && r = Leaf;;

map tree_func [t1;t2;t3]

Answer: [false;false;true]

10

7. [18 pts] OCaml Programming

1. (5 pts) Write a function partial_sum with type float -> float list -> float .

The partial_sum function should take a minimum value and a list and then return the
sum of all of the values in the list that are greater than or equal to the provided minimum
value. For full credit, you must use map and/or fold (in a non-superfluous way) to
implement partial_sum.

Examples:
partial_sum 3.1 [] = 0.0

partial_sum 2.4 [5.3; 2.4; 1.0] = 7.7

Answer: let partial_sum min lst = fold

(fun acc x -> if x >= min then x +. acc else acc) 0.0 lst

2. (6 pts) At your favorite Mexican Grill, burrito bowls can have three types - Veggie,
Chicken or Steak. An order can either be some kind of bowl or a bag with a pair of
orders in it, expressed as the order type as follows:

type order =

Veggie_bowl

 | Chicken_bowl

 | Steak_bowl

 | Bag of order * order

Write a function is_veggie of type order -> bool that computes whether an order
consists entirely of vegetarian items.

Examples:

is_veggie Veggie_bowl = true

is_veggie (Bag(Veggie_bowl,Veggie_bowl)) = true

11

is_veggie (Bag(Veggie_bowl,Bag(Veggie_bowl,Steak_bowl))) = false
is_veggie (Bag(Bag(Veggie_bowl,Veggie_bowl),Bag(Veggie_bowl,Veggie_bowl)))
Answer:

let rec is_veggie ord =

match ord with
| Veggie_Bowl -> true
| Bag (o1, o2) -> (is_veggie o1) && (is_veggie o2)
| _ -> false

3. (7 pts) Write a function bag_order that takes an order list and produces a single
order, containing all of the orders in the list. If given an empty list, throws exception
Invalid_argument “empty”

Examples:

bag_order [Veggie_bowl] = Veggie_bowl

bag_order [Veggie_bowl; Chicken_bowl] = Bag(Veggie_bowl, Chicken_bowl)

bag_order [Veggie_bowl; Chicken_bowl; Steak_bowl] =

 Bag(Veggie_bowl, Bag(Chicken_bowl, Steak_bowl))

Answer:

let rec bag_order lst =

match lst with

| [] -> raise (Invalid_argument “empty”)

| [h] -> h

| h::t -> Bag(h, bag_order t)

(* Note that order matters above. Bag(bag_order t, h) would be

incorrect. *)

12

Next question is optional and worth zero point.

4. (0 pts) Write a function flat_bag that takes an order and “flattens” it, so that for any Bags in
the order, the left component of the Bag is never itself a Bag. The order of the non-bag elements
should be the same. Hint: You will want to use the bag_order function to help.

Examples:

let b = (Bag (Bag(Veggie_bowl, Veggie_bowl),Steak_bowl));;

flat_bag b = Bag (Veggie_bowl, Bag (Veggie_bowl, Steak_bowl));;

flat_bag (Bag(b,b)) =

 Bag (Veggie_bowl, Bag (Veggie_bowl, Bag (Steak_bowl,

 Bag (Veggie_bowl, Bag (Veggie_bowl, Steak_bowl)))));;

Answer: Left as an exercise for the reader.

13

