
fCMSC330 Spring 2018 Midterm 1
9:30am/ 11:00am/ 3:30pm

Solution

Name (PRINT YOUR NAME as it appears on gradescope):

 __

Discussion Time (circle one) 10am 11am 12pm 1pm 2pm 3pm

Instructions

● Do not start this test until you are told to do so!
● You have 75 minutes to take this midterm.
● This exam has a total of 100 points, so allocate 45 seconds for each point.
● This is a closed book exam. No notes or other aids are allowed.
● Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
● For partial credit, show all of your work and clearly indicate your answers.
● Write neatly. Credit cannot be given for illegible answers.

 Problem Score

1 Programming Language Concepts /10

2 Ruby Regular Expressions /10

3 Ruby execution /13

4 Ruby Programming /18

5 OCaml Typing /17

6 OCaml Execution /15

7 OCaml Programming /17

 Total /100

1

1. [10 pts] Programming Language Concepts

1.1 [7 pts] Circle the correct answer:

a. True / False: [1,2,3] is a list/array of three ints in both OCaml and Ruby

b. True / False: Static type checking occurs at compile time

c. True / False: In dynamically typed languages, a type error will go unnoticed if

the line containing the error is never executed

d. The OCaml compiler does which of the following if you omit a case in a pattern

match: Nothing / Emits a warning / Emits an error

e. True / False: Ruby variables are declared explicitly

f. True / False: All values in Ruby are objects

g. True / False: Ruby code blocks are first class, e.g., they can be stored in arrays

1.2 [3 pts] Show the contents of the closure for f after executing the following code:

let add = (fun x -> (fun y -> x + y + 10));;

let f = add 5;;

Code

fun y -> x + y + 10

Code may not have x-> ...

Environment

x = 5

optionally: add = …
y is not present

2

2. [10 pts] Ruby Regular Expressions

2.1. [3 pts] Write a regular expression that accepts precisely 8, 9, or 10 letters

/^[A-Za-z]{8,10}$/

Notes: You must include ^ and $ or the match is not precise; using \w rather than
[A-Za-z] is imprecise, since \w allows numbers and underscores

2.2. [3 pts] Write a string that matches the following regular expression:

/^www(\.[a-zA-Z]+)*(\.[a-zA-Z]{2,3})$/

www.a.com

Note: The above is any url that begins with www followed by a period

then one or more letters. This pattern (after www) may be repeated 0 or

more times. The string ends with a period then either 2 or 3 letters.

2.3. [4 pts] Circle all of the given strings that match the following regular expression

/^[0-9]+(,[0-9])*$/

 "3562" "0432,7,7384" "8392,6,3" "8265,"

3

3. [13 pts] Ruby execution

Write the output of the following Ruby code. If there is an error, then write ERROR. If nil is
printed write “nil” and not the empty string. Hint: select invokes the block passing in
successive elements, returning an array containing those elements for which the block returns a
true value.

3.1. [2 pts] Output: ERROR

x = []

x[3] = 4

puts x["3"]

3.2. [2 pts] Output: nil

m = {"hello" => 3, "world" => 4} 3
puts m[3]

puts m["hello"]

3.3. [2 pts] Output: ERROR

x = {}

x["hi"].push(3)

puts x["hi"]

3.4. [2 pts] Output: [2, 4, 6, 0, 8]

x = [2, false, 4, nil, 6, 0, 8]

puts x.select {|y| y}

4

3.5. [2 pts] Output: true

x = "hello" false
y = "hello"

puts (x == y)

puts (x.equal? y)

3.6. [3 pts]

class Foo

@@x = []

def initialize(ele)

@@x.push ele

end

def add(ele)

@@x.push ele

@@x

end

end

f = Foo.new 5

g = Foo.new "hi"

puts (f.add true)

Output: [5, “hi”, true]

5

4. [18 pts] Ruby Programming

Implement a Graph class, which represents a directed graph as a collection of nodes that are
linked by edges. Cycles, including self-edges, are allowed, but there can be at most one edge
between any pair of nodes. A template for your implementation is given on the next page. You
may NOT edit the initialize method, whose implementation implies you should store your
graph as a hash. Implement the following methods.

4.1 [8 pts] addEdge(str) adds an edge represented by the str input parameter to the
graph. The str input parameter has the format 'start: nodename end: nodename', where a valid
nodename is a combination of one or more letters (uppercase or lowercase) followed by a dash
(‘-’) followed by one or more digits. For example:

g = Graph.new

g.addEdge("start: Node-5 end: tidepod-6")

g.addEdge("start: tidepod-6 end: A-7")

g.addEdge("start: A-8 end: tidepod-6")

will create a graph g with the edges (Node-5, tidepod-6), (tidepod-6, A-7), and (A-8, tidepod-6)
in it. If the input string to addEdge is incorrectly formatted, then nothing will be added. For
example:

g.addEdge("start: Node5 end: hello-6")

will add no edges to g because Node5 is an invalid nodename.

4.2 [5 pts] inDegree(node) takes a node (a string) and returns the number of edges
ending at that node. For example, for the graph g above, g.inDegree("Node-5") is 0, while
g.inDegree("tidepod-6") is 2. The inDegree of a node with no incoming edges (or any
edges at all) in the graph is 0.

4.3 [5 pts] outDegree(node) takes a node (a string) and returns the number of edges that
start at that node. For example, for graph g above, g.outDegree("Node-5") and
g.outDegree("A-8") are both 1. A node with no outgoing edges has degree zero, as does a
node with no edges at all.

Implement your solutions on the next page.

6

class Graph

def initialize # do not change, add to, or delete this method
@g = { }

end

def addEdge(str)

 if line =~ /^start: ([a-zA-Z]+\-\d+) end: ([a-zA-Z]+\-\d+)$/

if(@g[$1] == nil)

@g[$1] = [$2]

else

if(!g[$1].include?($2))

@g[$1].push($2)

end

end

 end

end

def inDegree(node)

 counter = 0
@g.each do |k,v|

if v.include?(node)

 counter = counter + 1

 end

end

 counter

end

def outDegree(node)

 if(@g[node])
return @g[node].length

else

return 0

end

end

end

7

5. [17 pts] OCaml Typing
Determine the type of the following definitions. Write ERROR if there is a type error.

5.1. [2 pts]
type 'a option = Some of 'a | None

let f a =

 if a < 0 then None else Some a

;;

int -> int option

5.2. [3 pts]
let f x y = [x;y]

;;

‘a -> ‘a -> ‘a list

5.3. [3 pts]
let rec g l =

 match l with

 | [] -> []

 | [x] -> []

 | h1::h2::t -> (h1,h2)::(g t)

;;

'a list -> ('a * 'a) list

8

Write an expression that has the following type, without using type annotations

5.4 [3 pts] bool -> bool -> bool list

fun a b -> [a||b];;

fun a b -> if a then [a] else [b];;

fun a b -> if a || b then [a;b] else [b;a];;

5.5 [3 pts] (int * 'a) -> int

fun (a,b) -> a + 5;;

fun (3,x) -> 3;;

5.6 [3 pts]

let rec fold f a l =

 match l with

 | [] -> a

 | h::t -> fold f (f a h) t

fold: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

Define a function f that when used in the following expression will not produce any type errors.
The implementation and type of fold are given for reference, above.

fold f ([],0) [5;4;3;2;1]

let f (l,i) x = (x::l, x+i);;

let f a x = a;;

9

6. [15 pts] OCaml Execution

let rec fold f a l =
 match l with
 | [] -> a
 | h::t -> fold f (f a h) t

let rec map f l =
 match l with
 | [] -> []
 | h::t -> (f h)::(map f t)

Determine the final value of the following expressions. Write EXCEPTION if an exception is
thrown or ERROR if there is a type error.

6.1. [2 pts] let f a =

 if a = 1 then "harambe"
 else 0 in
f 5

ERROR

6.2. [3 pts] (you might find it useful to refer to the map and fold definitions given above)

let xs = map (fun (x,y) -> x) [(2,"a");(3,"b")] in

fold (fun a h -> a * h) 1 xs

6

6.3. [2 pts] let f a = fun b -> if a > b then a else b in

map (f 1) [0;1;2;3]

[1; 1; 2; 3]

10

6.4. [2 pts] let f a b = if a=b then (a-1) else (b+1) in

f (4,8)

ERROR

Note: EXCEPTION is incorrect. The expression above results in a type error that is
detected at compile time, not an exception that is thrown at run time.

6.5. [3 pts] let y = 4 in

let sub x y = x - y in

let part = sub 3 in

let y = 2 in

(sub 3 7, part y)

(-4, 1)

6.6. [3 pts] (you might find it useful to refer to the type 'a option given in 5.1)

let rec f l =

 match l with

 | [] -> 0

 | None::t -> f t

 | (Some _)::t -> 1 + (f t)

in f [Some "a"; None; None; Some "b"; Some "c"]

3

11

7. [17 pts] OCaml Programming

7.1. [8 pts] Write a function int_of_digits that takes a list of digits and returns an int having
those digits. For full credit, you must implement int_of_digits using fold (see the top of
question 6 for its definition). Examples:

int_of_digits [] = 0

int_of_digits [0] = 0

int_of_digits [1;2;3] = 123

int_of_digits [1;0] = 10

Answer:

let int_of_digits lst = fold (fun a x -> a*10 + x) 0 lst

12

7.2. [9 points] Using the int_tree type below, write a function sum_level that sums all the
node values at a given level within the tree (starting at 0 for the top). Leaves present at a given
level do not contribute (i.e., they have count zero). If the level is greater than the depth of the
tree, return 0.

type int_tree =

 IntLeaf

| IntNode of int * int_tree * int_tree

;;

Examples:

sum_level (IntLeaf) 0 = 0;;

sum_level (IntLeaf) 1 = 0;;

sum_level (IntNode (1,IntNode(2,IntLeaf,IntLeaf),IntLeaf)) 0 = 1;;

sum_level (IntNode (1,IntNode(2,IntLeaf,IntLeaf),IntLeaf)) 1 = 2;;

sum_level (IntNode (1,IntNode(2,IntLeaf,IntLeaf),IntNode(3,IntLeaf,IntLeaf))) 1 = 5;;

Write your code here (add the rec keyword if you need it):

let rec sum_level t n =
 match t with

 IntLeaf -> 0

 | IntNode(m,_,_) when n=0 -> m

 | IntNode(m,l,r) -> sum_level l (n-1) + sum_level r (n-1)

13

