CM SC330 Fall2016 M xiterm #1
2:00pm /3:30pm

Nam e:

D iscussion Tine: 10am 1lam 12pm 1pm 2pm 3pm

TA Nam e (C ircle): Alex Austn Aym an Brian Damin Dan¥lK.
Dan¥ElP. Greg Tanmy Tin Viung WilK.

Instructions

Do not start this test until you are told to do so!

You have 75 minutes to take this midterm.

This exam has a total of 100 points, so allocate 45 seconds for each point.

This is a closed book exam. No notes or other aids are allowed.

Answer essay questions concisely in 2-3 sentences. Longer answers are not needed

For partial credit, show all of your work and clearly indicate your answers.

Write neatly. Credit cannot be given for illegible answers.

i [e [s Y s [s [s e

Problem Score

1 Programming Language Concepts /13
2 Regular Expressions /10
3 Ruby execution /10
4 Ruby Programming /15
5 | OCaml Typing [16
6 | OCaml Execution /18
7 | OCaml Programming /18

Total /100

1. Programming Language Concepts (13 pts)

A. (4pts) What will be the value of y in the following block of OCaml code, fist evaluated
with static scoping, and then ie-evaluated with dynamic scoping:
let x = 10;;
let f = Static:
let squaie y = x * x in
let x =20 in Dynamic:
squaie x;;
lety = f;;
Soluton:
Static: 100
Dynamic: 400
B. (2pts) Name an advantage and a disadvantage of using an inteipieted language: (One

sentence answei foi each of advantage and disadvantage)

Many options here, e.g.

1
1
1

Fast to write/iterate on code
code runs more slowly than compiled languages
Code may be more portable (don’t need to recompile)

(1pt) One of the most impoitant featuies of functional piogiamming languages is
a) Immutable data structures

b) Statements with side efects

c) lteiative contiol stiuctuies

d) Implicit type defnition

(1pt) Which is a true statement about lists in Ruby and OCaml?

a) Ruby lists are heterogenous; OCaml lists are homogenous.
b) Ruby lists aie homogenous; OCaml lists aie heterogenous.

c) Ruby lists and OCaml lists aie heterogenous.

d) Ruby lists and OCaml lists aie homogenous.

. (1pt) Which of the following OCaml featuies is only possible because of closuies:

a) Tail Recuision

b) Type Infeience

c) Partial Application
d) Pattein Matching

(1pt) A typing system which allows the type of a vaiiable to change within a function is

consideied to have _Dynamic typing.

G. (1pt) A language which only lets the piogiammei use a vaiiable aftei they have declaied
it is consideied to have _Explicit declaiation

H. (1pt) The "==" opeiatoi in Ruby and the “=" opeiatoi in OCaml aie equivalent
a) True
b) False

I. (1pt) The teims “closuie” and “function pointei” have the same meaning
a) Tiue
b) False

2. Regular Expressions (10 pts)

A. (3 pts) Wiite a Ruby iegulai expiession foi a passwoid that must have at least 1 lettei
and at least 1 digit.

/([a-zA-Z].\d)|(\d.*[a-zA-Z])/
B. (2 pts) Give an example that adheies to the following iegex:
/" [a-zA-Z0-9 \-.]+@[a-zA-Z0-9 \-.]1+\.[a-zA-Z]{2,5} %/
Valid email address

C. (2 pts) Write the output of the following code:
“HIST100 (about the past)” =~ /[A-Z]{4}(\d{3}) (.+)/

puts $1
puts $2

100
(about the past)

D. (3 pts) Write the output of the following code: (Recall that foo.inspect gives the
representation of foo as it would appear in source code, e.g. [1,2,3].inspect is
"[1,2,3]")

s = “Computers need electricity.”
a = s.scan(/[a-z]+/)
puts a.inspect

3

[“omputers”,”’need”,”electricity”]

3. Ruby Execution (10 pts)
Write the output of the following Ruby programs. If the program does not execute due to an error,
NO OUTPUT instead. Recall thmat. inspect gives the representatifo af it would appear in
source code, €.9,2,3] .inspect is"[1,2,3]".
A. (4 pts)
def myFun(x)
yield x
end

myFun(3) { |v|
str=v % 2 ? "foo" : "bar"
puts "#{v} #{str}"
}
O utput: 3 foo

B. (3 pts)
x =[5, 10]
x[3] = 20
y =X
y << ["a", "b"]
puts x.inspect

Output:[5, 10, nil, 20, ["a", "b"]]

C. (3 pts)
foo = {1 => ["apple"], 2 => "kiwi", 3 => "yam"}
bar = foo.keys.sort { |a,b]|
foo[b].length <=> foo[a].length
}
puts bar.inspect
Output: [2, 3, 1]

A.

4. Ruby Programming (15 pts)

You will be implementing a Ruby class named WordCounter which will iead English text fiom
a fle and allow you to queiy the numbei of times a given woid appeais. Foi the puiposes of this
question, a woid is a sequence of alphabetic chaiacteis. In oui input fles, woids will be

sepaiated by whitespace and the following othei chaiacteis: ., " :;

You must implement the following methods. You may of couise implement any othei helpei
methods you wish. (5 points each):
initialize(flename) : Reads the text fiom the fle, extiacts the woids fiom the text,
and stoies them in an appiopiiate data stiuctuie. You may fnd it useful to use
the 10.foreach method, which takes a flename and a code block, and passes
each line in the fle to the code block in tuin, automatically closing the fle when it
ieaches the end. Example usage:

[0.foreach("myfile.txt") { |line| puts line }

count(word): Retuins the numbei of occuiiences of word in the fle. Foi the
puiposes of this question, woids which difei by capitalization aie consideied
difeient woids, e.g. “Cat” and “cat” would be consideied sepaiate woids.

each: Takes a code block and passes each woid-and-count paii to it in tuin. The oidei
in which woid-and-count paiis aie passed to the block does not mattei. You may
assume that a code block will always be passed.

Example:

had.txt:
James had had "had," but John had had "had had."

example usage:
wc = WordCounter.new("had.txt")
puts wc.count("had")
wc.each do |word, count|
puts "#{word}: #{count}"
end

output:
7
James: 1
had: 7
but: 1
John: 1

Solution:

class WordCounter
def initialize(filename)
@word_counts = Hash.new(0)

|0.foreach(filename) do |line|
words = line.split(/[\s.,":;]1+/)
words.each do |word]|
if word =~ /"~ [a-zA-Z]+$/
@word_counts[word] +=1
end
end
end
end

def count(word)
@word_counts[word]
end

def each
@word_counts.each do |word, count|
yield(word, count)
end
end
end

Rubiic and paitial ciedit options

Note: In the past students have implemented assignments like this with vaiying amounts of
piocessing in the constiuctoi. We have given 2 fiee points foi the constiuctoi assuming that
most students won’t check all of the validity constiaints in the constiuctoi, but instead in count
and each. Howevei, if the student checks all validity constiaints in the constiuctoi, the points
foi those constiaints should be assessed on initialize and the fiee points given on count and
each, to avoid double jeopaidy.

5. OCaml Typing (16 pts)

Wiite Ocaml expiession oi defnition of the following types without using type annotation:
A. (2 pts) (int * float) list

B. (3 pts) int -> string -> (int * string) list
C. (3 pts) 'a -> ('a -> bool) -> string

2. What is the type of the following expiession?
A. (2 pts) ([1;2], “foo”)

B. (3pts) letfxy = x:(y x 2)

C. (3 pts) let rec f x = match x with
[[1-> 1]
|h::t -> match h with
[(a,b) -> if (a = b) then a::(f t) else b::(f t);;

Solution:

1. Possible solutions:
1.[(3, 3.14)]

2. fun xy -> (x, y)::[(1, “hello”)]
3. fun x f2 -> if (f2 x) then “hello” else “hello world”

1. int list * string
2.'a-> (int-> 'a -> 'a list) -> 'a list
3. (‘a * 'a) list -> 'a list

6. OCaml Execution (18 pts)

To the iight of each code snippet, wiite what the vaiiable res contains aftei executing the given
code. Note that each code snippet contains syntactically and semantically valid OCaml code.

A. (3 pts)
letrecfxy =ify =0 then x else fy (x mod y);;
letres =9 6;;

OQutput:3

B. (3 pts)
let a = ref "big";;
let b = ref "data";;
a := "buzz";;

let res = (('a), (b))

0 utput:(“buzz”, “data”)

C. (4 pts)
let procfxy =iffxy > 0then x elsey;;
let res = proc (funab->a*b)(-2) 4

Output:4

D. (4 pts)
let rec map f = function
|1 ->1]
| X i xs->letz="fxinz: mapfxs

12l

let res =
letfxy =x:=1Ix+(y*y), Ixin
map (f (ref 0)) [1,2;3;4];;

Output:[1;5; 14; 30]

4 pts

E. (4 pts) (Hint: peivasive maxof typ@al max : 'a -> 'a -> 'a ietuins the gieatei
of the two aiguments.)

type int_tree =
| Leaf
| Node of int * int_tree * int_tree

let rec bar = function

| Leaf -> -1

| Node(x, I, r) -> 1 + max (bar 1) (barr)

let res =

let t = (Node(1, Node(2, Leaf, Node(3, Leaf, Leaf)), Leaf)) in
bar t

OQutput:2
4 pts

7. OCaml programming (18 pts)

let recm ap f| = match | with
[1->11
| hiit->letr=fhinr::mapft

r

let rec fold fa | = match | with
[1->a
|h::t -> fold f (fa h) t

Helper functions are allow ed !

A. (6 pts) Using fold and/oi map, wiite a function multi_map of type (‘a -> ‘a) ->
(‘a *int) list -> ‘a list . This new highei oidei function applies the input
function to each element of the input list howevei many times aie specifed by the
second element of the tuple. Output oidei must be the same as the input oidei. If a
negative int is encounteied, do not apply the function to that element.

10

Example input:
multi_map (fun x -> x * x) [(5, 1); (7, -1); (2, 3); (10, 2)]
> [25, 7, 256, 10000]

Solution:

let iec multi_map f xs =
let iec helpei (n, i) = if i <= 0 then n else helpei (fn,i-1)
in map helpei xs

B. (6 pts) Using fold and/oi map, wiite a function relative of type int list -> int
list . This function decieases each element in the input list by the list's smallest integei.

Example input:
Relative [100; 80; 90]
> [20; 0; 10]

Solution:
let relative | = match | with

| [1->11

|h:t->
let s = fold min h tin
map (fun h-> h-s) |

C. (6 pts) Using fold and/oi map, wiite a function max_repeat of type ‘a list -> int
This function fnds the maximum numbei of times an element of the input list is iepeated
in a iow. If the list is empty, the iesult should be 0.

Hint: The peivasive maxmight make youi implementation easiei.

11

valmax:'a->'a->'a
Retuin the gieatei of the two aiguments.

Example input:
max_repeat [1; 2; 2; 2; 0; 3; 3; 3; 3]
>4

Solution:
let max_repeat = function

|[1->0
| h:t->
let aux (c, n, m) h =
ifc=hthen(c,n+ 1, m)
else (h, 1, max m n)

in
let (, n, m) =foldaux (h, 1, 1) tin
max n m

12

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

