
CMSC330 Fall 2014 Midterm 1

Name

Discussion Time 10am 11am noon 1pm 2pm 3pm
TA Name (circle): Casey Casey Xuefang Xuefang Ian Ian
 (for picking up graded quiz) Ilse Daniel Yogarshi

Instructions

• Do not start this test until you are told to do so!
• You have 75 minutes to take this midterm.
• This exam has a total of 100 points, so allocate 45 seconds for each point.
• This is a closed book exam. No notes or other aids are allowed.
• For partial credit, show all of your work and clearly indicate your answers.
• Write neatly. Credit cannot be given for illegible answers.

 Problem Score
1 Programming

Languages et al.
/8

2 Ruby /10
3 Regular expressions

& finite automata
/6

4 RE to NFA /4
5 NFA to DFA /14
6 DFA minimization /6
7 Ruby programming /40
8 OCaml /12
 Total /100

HONOR PLEDGE: I pledge on my honor that
I have not given or received any unauthorized
assistance on this assignment / examination. SIGNATURE: ______________________

1. (8 pts) Programming languages (PL) et al. For the following multiple choice questions, circle the letter(s)
on the right corresponding to the best answer(s) to each question.

a. Which following PL feature(s) is not a part of Ruby? A B C D

A) object-oriented programming
B) method overloading
C) implicit declarations
D) dynamic types

b. Which value(s) in the guard of an Ruby if statement cause A B C D
the then branch to be executed? E.g., if (guard) then x else y end

A) true B) false C) nil D) 0

c. Which Ruby feature(s) makes “undefined variable” errors more likely? A B C D
A) code blocks
B) regular expressions
C) implicit declarations
D) dynamic types

d. Ruby code blocks are an example of which PL feature(s)? A B C D
A) object-oriented programming
B) functional programming
C) higher-order functions
D) imperative programming

e. For which PL(s) is expression “x == y” not testing physical equality? A B C D
A) Java
B) C
C) Ruby
D) OCaml

f. Which following operation(s) is not essential for regular expressions? A B C D

A) + (e.g., a+)
B) * (e.g., a*)
C) . (e.g., ab)
D) | (e.g., a|b)

g. Which following feature(s) is not allowed in an NFA? A B C D

A) state with multiple transitions for the same label
B) epsilon transitions
C) multiple final states
D) multiple start states

h. Which following feature(s) is not allowed in an OCaml expression? A B C D

A) lists with different numbers of elements
B) lists with different types of elements
C) tuples with different numbers of elements
D) tuples with different types of elements

2. (10 pts) Ruby. What is the output (if any) of the following Ruby programs? Write FAIL if code does not
execute. Output “nil” for “puts x” when x is nil (as in Ruby 1.8.7), instead of outputting a blank line (as in
Ruby 1.9.3).

a. a = 1 OUTPUT =
puts a+1
a = “terp”
puts a

b. a = [] OUTPUT =

a[1][2] = 3
 puts (4 + a[1][2])

c. a = [] OUTPUT =
a[“terp”] = “tesudo”
a[5] = 6
a.each { |x| puts x }

d. “Univ of Maryland” =~ /([a-z]+)/ OUTPUT =

puts “Found #{$1}” if $1
puts “Found #{$2}” if $2
puts “Found #{$3}” if $3

e. a = “Univ of Maryland”.scan(/[a-z]+/) OUTPUT =

a.each { |x| puts “Found #{x}” }

3. (6 pts) Regular expressions and finite automata.

a. (2 pts) Write a formal regular expression for all even integers between 10 and 999.

b. (4 pts) Create a DFA that accepts a string (composed of a’s and b’s) if and only if it is NOT
accepted by the following DFA.

4. (4 pts) RE to NFA. Create a NFA for the regular expression R|(S*) given the NFAs for R & S below. You
must use the method described in lecture. Note that R and S are regular expressions, not symbols in the
alphabet.

5. (14 pts) NFA to DFA. Consider the NFA given on the right:

a. (2 pts) Does the NFA accept the string “aab”?
If it accepts the string, list a sequence of state
transitions (e.g., 1,2,3) that leads to acceptance.

b. (12 pts) Reduce the NFA to a DFA using the subset construction algorithm discussed
in class. Be sure to label each state in the DFA with the corresponding state(s) in the
NFA.

6. (6 pts) DFA Minimization
Consider applying the Hopcroft DFA minimization algorithm discussed in class to the following
DFA.

a. (2 pts) What are the initial partition(s) created by the Hopcroft algorithm?

b. (2 pts) Do any partitions need to be split? If yes, what are the resulting partitions after
the split?

c. (2 pts) Is the DFA minimization algorithm finished at this point? Explain.

7. (40 pts) Ruby programming

Implement a Ruby program in roster.rb that reads a student database file where each line
contains a student UID, student name, college, and a single major. Your program must process
this file and display two lists. The first list displays each college (sorted by college name). For
each college, display on a separate line the college name, the number of students in the college,
and each student in the college (sorted by student name). The second list displays each student
(sorted by student name). For each student, display on a separate line the student’s UID, student
name, and majors (sorted by major name). Your program will be called with the name of the
database file as an argument. For example, running your program on a file called data.txt (“ruby
roster.rb data.txt”) could generate:

% more data.txt
0002: Cathy,ENGR,Computer Engineering
0004: David,BSOS,Economics
0003: Bob,BSOS,Psychology
0008: Alice,CMNS,Computer Science
0003: Bob,BSO,Economics
0008: Alice,CMNS,Biology
0002: Cathy,CMNS,Math
0005: Ellen,CMNS,Computer Science
0002: Cathy,CMNS

% ruby roster.rb data.txt
ERROR 0003: Bob,BSO,Economics
ERROR 0002: Cathy,CMNS
COLLEGES
BSOS,2,Bob,David
CMNS,3,Alice,Cathy,Ellen
ENGR,1,Cathy
STUDENTS
0008,Alice,Biology,Computer Science
0003,Bob,Psychology
0002,Cathy,Computer Engineering,Math
0004,David,Economics
0005,Ellen,Computer Science

Student UIDs must be 1 or more digits, and are separated from student names by a colon and a
space. Student names must be composed of 1 or more lowercase or uppercase characters. College
names must be exactly four uppercase letters. Majors must be composed of 1 or more lowercase
or uppercase letters, and may include spaces. Student names, college names, and majors are
separated by commas. Lines that do not follow this format should produce an error message and
otherwise be ignored.

Students may have an arbitrary number of majors (e.g., Alice, Cathy). Each student may only be
counted once for each college, even if they have multiple majors within the college (e.g., Alice
only counts as 1 student for CMNS).You may assume each student has a single unique name &
UID. While reading in the file, for each invalid line found, your program should output ERROR
followed by the invalid line. Next, it should output “COLLEGES”, followed by the information
for each college (in sorted order by college name). Finally, it should output “STUDENTS”,
followed by the information for each student (in sorted order by student name).

Helpful Functions
f = File.new(n, mode) // opens n in mode, returns File f
f.eof? // is File object f at end?
ln = f.readline // read single line from file f into String ln
a = f.readlines // read all lines from file into array a
a = str.scan(…) // finds patterns in String str, returns in array a
a = h.keys // returns keys in hash h as an array a
a.sort // returns sorted version of array a
a.sort { |x,y| ... } // sort using code block as comparator
a.sort! // sorts elements of array a in place
a.size // number of elements in the array
a.join(x) // create str by joining array elements separated by str x
a.each { … } // apply code block to each element in array
a.push / a.pop // treat array as stack
s.to_i // convert string s to int value
ARGV // array containing command line arguments

8. (12 pts) OCaml Types and Type Inference

a. (4 pts) Give the type of the following OCaml expressions

i. (2 pts) [[2 + 3]] Type =

ii. (2 pts) fun x -> [3] Type =

b. (4 pts) Write an OCaml expression with the following type

i. (2 pts) ((int list) * int) list Code =

ii. (2 pts) ‘a list -> ‘a -> ‘a list Code =

c. (4 pts) Give the value of the following OCaml expressions. If an error exists, describe
the error.

i. (2 pts) let x = 3 in let x = x+2 in x+1

Value / Error =

ii. (2 pts) (fun a -> match a with (x::y::z) -> z) [2 ; 3 ; 4]

Value / Error =

